These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 31213624)

  • 21. Magnon edge states in the hardcore- Bose-Hubbard model.
    Owerre SA
    J Phys Condens Matter; 2016 Nov; 28(43):436003. PubMed ID: 27603092
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lattice Polarons across the Superfluid to Mott Insulator Transition.
    Colussi VE; Caleffi F; Menotti C; Recati A
    Phys Rev Lett; 2023 Apr; 130(17):173002. PubMed ID: 37172254
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mean-Field Scaling of the Superfluid to Mott Insulator Transition in a 2D Optical Superlattice.
    Thomas CK; Barter TH; Leung TH; Okano M; Jo GB; Guzman J; Kimchi I; Vishwanath A; Stamper-Kurn DM
    Phys Rev Lett; 2017 Sep; 119(10):100402. PubMed ID: 28949195
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Superfluid fermi gas in a 1D optical lattice.
    Orso G; Shlyapnikov GV
    Phys Rev Lett; 2005 Dec; 95(26):260402. PubMed ID: 16486318
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantum Monte Carlo method for the Bose-Hubbard model with harmonic confining potential.
    Kato Y; Kawashima N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 1):021104. PubMed ID: 19391703
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sweeping from the superfluid to the Mott phase in the Bose-Hubbard model.
    Schützhold R; Uhlmann M; Xu Y; Fischer UR
    Phys Rev Lett; 2006 Nov; 97(20):200601. PubMed ID: 17155669
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Superfluid to Mott-insulator transition in Bose-Hubbard models.
    Capello M; Becca F; Fabrizio M; Sorella S
    Phys Rev Lett; 2007 Aug; 99(5):056402. PubMed ID: 17930773
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phases of a two-dimensional bose gas in an optical lattice.
    Jiménez-García K; Compton RL; Lin YJ; Phillips WD; Porto JV; Spielman IB
    Phys Rev Lett; 2010 Sep; 105(11):110401. PubMed ID: 20867555
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Variational ansatz for the superfluid Mott-insulator transition in optical lattices.
    García-Ripoll JJ; Cirac J; Zoller P; Kollath C; Schollwöck U; von Delft J
    Opt Express; 2004 Jan; 12(1):42-54. PubMed ID: 19471510
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantum quench of an atomic Mott insulator.
    Chen D; White M; Borries C; DeMarco B
    Phys Rev Lett; 2011 Jun; 106(23):235304. PubMed ID: 21770517
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Many-Body Multifractality throughout Bosonic Superfluid and Mott Insulator Phases.
    Lindinger J; Buchleitner A; Rodríguez A
    Phys Rev Lett; 2019 Mar; 122(10):106603. PubMed ID: 30932664
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantum Critical Behavior of Entanglement in Lattice Bosons with Cavity-Mediated Long-Range Interactions.
    Sharma S; Jäger SB; Kraus R; Roscilde T; Morigi G
    Phys Rev Lett; 2022 Sep; 129(14):143001. PubMed ID: 36240423
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pinning quantum phase transition for a Luttinger liquid of strongly interacting bosons.
    Haller E; Hart R; Mark MJ; Danzl JG; Reichsöllner L; Gustavsson M; Dalmonte M; Pupillo G; Nägerl HC
    Nature; 2010 Jul; 466(7306):597-600. PubMed ID: 20671704
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transition from a two-dimensional superfluid to a one-dimensional Mott insulator.
    Bergkvist S; Rosengren A; Saers R; Lundh E; Rehn M; Kastberg A
    Phys Rev Lett; 2007 Sep; 99(11):110401. PubMed ID: 17930414
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Magnetic and superfluid transitions in the one-dimensional spin-1 boson Hubbard model.
    Batrouni GG; Rousseau VG; Scalettar RT
    Phys Rev Lett; 2009 Apr; 102(14):140402. PubMed ID: 19392416
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phase diagram of the commensurate two-dimensional disordered Bose-Hubbard model.
    Söyler SG; Kiselev M; Prokof'ev NV; Svistunov BV
    Phys Rev Lett; 2011 Oct; 107(18):185301. PubMed ID: 22107640
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nonequilibrium dynamics of the Bose-Hubbard model: a projection-operator approach.
    Trefzger C; Sengupta K
    Phys Rev Lett; 2011 Mar; 106(9):095702. PubMed ID: 21405638
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phase-slip-induced dissipation in an atomic Bose-Hubbard system.
    McKay D; White M; Pasienski M; DeMarco B
    Nature; 2008 May; 453(7191):76-9. PubMed ID: 18451857
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantum glass phases in the disordered Bose-Hubbard model.
    Sengupta P; Haas S
    Phys Rev Lett; 2007 Aug; 99(5):050403. PubMed ID: 17930735
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Emergence of coherence and the dynamics of quantum phase transitions.
    Braun S; Friesdorf M; Hodgman SS; Schreiber M; Ronzheimer JP; Riera A; Del Rey M; Bloch I; Eisert J; Schneider U
    Proc Natl Acad Sci U S A; 2015 Mar; 112(12):3641-6. PubMed ID: 25775515
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.