BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

746 related articles for article (PubMed ID: 31214202)

  • 1. Myeloid Derived Suppressor Cells: Key Drivers of Immunosuppression in Ovarian Cancer.
    Baert T; Vankerckhoven A; Riva M; Van Hoylandt A; Thirion G; Holger G; Mathivet T; Vergote I; Coosemans A
    Front Immunol; 2019; 10():1273. PubMed ID: 31214202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Therapeutic PD-1 pathway blockade augments with other modalities of immunotherapy T-cell function to prevent immune decline in ovarian cancer.
    Duraiswamy J; Freeman GJ; Coukos G
    Cancer Res; 2013 Dec; 73(23):6900-12. PubMed ID: 23975756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Myeloid-derived suppressor cells at diagnosis may discriminate between benign and malignant ovarian tumors.
    Coosemans A; Baert T; Ceusters J; Busschaert P; Landolfo C; Verschuere T; Van Rompuy AS; Vanderstichele A; Froyman W; Neven P; Van Calster B; Vergote I; Timmerman D
    Int J Gynecol Cancer; 2019 Nov; 29(9):1381-1388. PubMed ID: 31685557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of myeloid-derived suppressor cells in increasing cancer stem-like cells and promoting PD-L1 expression in epithelial ovarian cancer.
    Komura N; Mabuchi S; Shimura K; Yokoi E; Kozasa K; Kuroda H; Takahashi R; Sasano T; Kawano M; Matsumoto Y; Kodama M; Hashimoto K; Sawada K; Kimura T
    Cancer Immunol Immunother; 2020 Dec; 69(12):2477-2499. PubMed ID: 32561967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined PD-1 blockade and GITR triggering induce a potent antitumor immunity in murine cancer models and synergizes with chemotherapeutic drugs.
    Lu L; Xu X; Zhang B; Zhang R; Ji H; Wang X
    J Transl Med; 2014 Feb; 12():36. PubMed ID: 24502656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Programmed cell death ligand 1 disruption by clustered regularly interspaced short palindromic repeats/Cas9-genome editing promotes antitumor immunity and suppresses ovarian cancer progression.
    Yahata T; Mizoguchi M; Kimura A; Orimo T; Toujima S; Kuninaka Y; Nosaka M; Ishida Y; Sasaki I; Fukuda-Ohta Y; Hemmi H; Iwahashi N; Noguchi T; Kaisho T; Kondo T; Ino K
    Cancer Sci; 2019 Apr; 110(4):1279-1292. PubMed ID: 30702189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RPN13/ADRM1 inhibitor reverses immunosuppression by myeloid-derived suppressor cells.
    Soong RS; Anchoori RK; Yang B; Yang A; Tseng SH; He L; Tsai YC; Roden RB; Hung CF
    Oncotarget; 2016 Oct; 7(42):68489-68502. PubMed ID: 27655678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systemic but not MDSC-specific IRF4 deficiency promotes an immunosuppressed tumor microenvironment in a murine pancreatic cancer model.
    Metzger P; Kirchleitner SV; Boehmer DFR; Hörth C; Eisele A; Ormanns S; Gunzer M; Lech M; Lauber K; Endres S; Duewell P; Schnurr M; König LM
    Cancer Immunol Immunother; 2020 Oct; 69(10):2101-2112. PubMed ID: 32448983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Myeloid-Derived Suppressor Cells Restrain Natural Killer Cell Activity in Acute Coxsackievirus B3-Induced Myocarditis.
    Müller I; Janson L; Sauter M; Pappritz K; Linthout SV; Tschöpe C; Klingel K
    Viruses; 2021 May; 13(5):. PubMed ID: 34065891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microenvironmental effects limit efficacy of thymoquinone treatment in a mouse model of ovarian cancer.
    Wilson AJ; Saskowski J; Barham W; Khabele D; Yull F
    Mol Cancer; 2015 Nov; 14():192. PubMed ID: 26552746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intraperitoneal neutrophils activated by KRAS-induced ovarian cancer exert antitumor effects by modulating adaptive immunity.
    Yoshida M; Taguchi A; Kawana K; Ogishima J; Adachi K; Kawata A; Nakamura H; Sato M; Fujimoto A; Inoue T; Tomio K; Mori M; Nagamatsu T; Arimoto T; Koga K; Hiraike OW; Oda K; Kiyono T; Osuga Y; Fujii T
    Int J Oncol; 2018 Oct; 53(4):1580-1590. PubMed ID: 30066851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ovarian cancer modulates the immunosuppressive function of CD11b
    Udumula MP; Sakr S; Dar S; Alvero AB; Ali-Fehmi R; Abdulfatah E; Li J; Jiang J; Tang A; Buekers T; Morris R; Munkarah A; Giri S; Rattan R
    Mol Metab; 2021 Nov; 53():101272. PubMed ID: 34144215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AMPK Alpha-1 Intrinsically Regulates the Function and Differentiation of Tumor Myeloid-Derived Suppressor Cells.
    Trillo-Tinoco J; Sierra RA; Mohamed E; Cao Y; de Mingo-Pulido Á; Gilvary DL; Anadon CM; Costich TL; Wei S; Flores ER; Ruffell B; Conejo-Garcia JR; Rodriguez PC
    Cancer Res; 2019 Oct; 79(19):5034-5047. PubMed ID: 31409640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Prognostic value of tumor infiltration immune cells in pancreatic cancer].
    Zhao KL; Liu J; Jiang WN; Hao JH
    Zhonghua Wai Ke Za Zhi; 2018 Jun; 56(6):464-470. PubMed ID: 29886672
    [No Abstract]   [Full Text] [Related]  

  • 15. Immunoregulatory Effects of Myeloid-Derived Suppressor Cell Exosomes in Mouse Model of Autoimmune Alopecia Areata.
    Zöller M; Zhao K; Kutlu N; Bauer N; Provaznik J; Hackert T; Schnölzer M
    Front Immunol; 2018; 9():1279. PubMed ID: 29951053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. IRF-8 regulates expansion of myeloid-derived suppressor cells and Foxp3+ regulatory T cells and modulates Th2 immune responses to gastrointestinal nematode infection.
    Valanparambil RM; Tam M; Gros PP; Auger JP; Segura M; Gros P; Jardim A; Geary TG; Ozato K; Stevenson MM
    PLoS Pathog; 2017 Oct; 13(10):e1006647. PubMed ID: 28968468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Imaging of Tumor-Associated Macrophages in a Transgenic Mouse Model of Orthotopic Ovarian Cancer.
    He H; Chiu AC; Kanada M; Schaar BT; Krishnan V; Contag CH; Dorigo O
    Mol Imaging Biol; 2017 Oct; 19(5):694-702. PubMed ID: 28233218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. IL-6 as a major regulator of MDSC activity and possible target for cancer immunotherapy.
    Weber R; Groth C; Lasser S; Arkhypov I; Petrova V; Altevogt P; Utikal J; Umansky V
    Cell Immunol; 2021 Jan; 359():104254. PubMed ID: 33296753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeting Myeloid-Derived Suppressor Cells in Ovarian Cancer.
    Mabuchi S; Sasano T; Komura N
    Cells; 2021 Feb; 10(2):. PubMed ID: 33562495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of Vascular Endothelial Growth Factor in Ovarian Cancer Inhibits Tumor Immunity through the Accumulation of Myeloid-Derived Suppressor Cells.
    Horikawa N; Abiko K; Matsumura N; Hamanishi J; Baba T; Yamaguchi K; Yoshioka Y; Koshiyama M; Konishi I
    Clin Cancer Res; 2017 Jan; 23(2):587-599. PubMed ID: 27401249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.