These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 31214207)

  • 1. Stomatal Development and Conductance of a Tropical Forage Legume Are Regulated by Elevated [CO
    Habermann E; Dias de Oliveira EA; Contin DR; San Martin JAB; Curtarelli L; Gonzalez-Meler MA; Martinez CA
    Front Plant Sci; 2019; 10():609. PubMed ID: 31214207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How does leaf physiological acclimation impact forage production and quality of a warmed managed pasture of Stylosanthes capitata under different conditions of soil water availability?
    Habermann E; Dias de Oliveira EA; Delvecchio G; Belisário R; Barreto RF; Viciedo DO; Rossingnoli NO; de Pinho Costa KA; de Mello Prado R; Gonzalez-Meler M; Martinez CA
    Sci Total Environ; 2021 Mar; 759():143505. PubMed ID: 33223164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increasing atmospheric CO2 and canopy temperature induces anatomical and physiological changes in leaves of the C4 forage species Panicum maximum.
    Habermann E; San Martin JAB; Contin DR; Bossan VP; Barboza A; Braga MR; Groppo M; Martinez CA
    PLoS One; 2019; 14(2):e0212506. PubMed ID: 30779815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Warming and water deficit impact leaf photosynthesis and decrease forage quality and digestibility of a C4 tropical grass.
    Habermann E; Dias de Oliveira EA; Contin DR; Delvecchio G; Viciedo DO; de Moraes MA; de Mello Prado R; de Pinho Costa KA; Braga MR; Martinez CA
    Physiol Plant; 2019 Feb; 165(2):383-402. PubMed ID: 30525220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adjustments in photosynthetic pigments, PS II photochemistry and photoprotection in a tropical C4 forage plant exposed to warming and elevated [CO
    Approbato AU; Contin DR; Dias de Oliveira EA; Habermann E; Cela J; Pintó-Marijuan M; Munné-Bosch S; Martinez CA
    Plant Physiol Biochem; 2023 Jan; 194():345-360. PubMed ID: 36463636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Soybean leaf hydraulic conductance does not acclimate to growth at elevated [CO2] or temperature in growth chambers or in the field.
    Locke AM; Sack L; Bernacchi CJ; Ort DR
    Ann Bot; 2013 Sep; 112(5):911-8. PubMed ID: 23864003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Warming offsets the benefits of elevated CO
    Habermann E; Dias de Oliveira EA; Contin DR; Costa JVCP; Costa KAP; Martinez CA
    Front Plant Sci; 2022; 13():1033953. PubMed ID: 36544868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Future warming will change the chemical composition and leaf blade structure of tropical C
    Habermann E; Contin DR; Afonso LF; Barosela JR; de Pinho Costa KA; Viciedo DO; Groppo M; Martinez CA
    Sci Total Environ; 2022 May; 821():153342. PubMed ID: 35093366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Responses of agricultural crops of free-air CO2 enrichment].
    Kimball BA; Zhu J; Cheng L; Kobayashi K; Bindi M
    Ying Yong Sheng Tai Xue Bao; 2002 Oct; 13(10):1323-38. PubMed ID: 12557686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of experimental warming on leaf functional traits, leaf structure and leaf biochemistry in Arabidopsis thaliana.
    Jin B; Wang L; Wang J; Jiang KZ; Wang Y; Jiang XX; Ni CY; Wang YL; Teng NJ
    BMC Plant Biol; 2011 Feb; 11():35. PubMed ID: 21329528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Eco-physiological investigations on wild and cultivated plants in the Negev Desert : III. Daily courses of net photosynthesis and transpiration at the end of the dry period].
    Schulze ED; Lange OL; Koch W
    Oecologia; 1972 Dec; 9(4):317-340. PubMed ID: 28313070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Are the interaction effects of warming and drought on nutritional status and biomass production in a tropical forage legume greater than their individual effects?
    Olivera-Viciedo D; de Mello Prado R; Martinez CA; Habermann E; de Cássia Piccolo M; Calero-Hurtado A; Barreto RF; Peña K
    Planta; 2021 Oct; 254(5):104. PubMed ID: 34686920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Climate warming alters photosynthetic responses to elevated CO
    Sage E; Heisler-White J; Morgan J; Pendall E; Williams DG
    Am J Bot; 2020 Sep; 107(9):1238-1252. PubMed ID: 32931042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lack of photosynthetic or stomatal regulation after 9 years of elevated [CO2] and 4 years of soil warming in two conifer species at the alpine treeline.
    Streit K; Siegwolf RT; Hagedorn F; Schaub M; Buchmann N
    Plant Cell Environ; 2014 Feb; 37(2):315-26. PubMed ID: 24003840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Balancing trade-offs: Enhanced carbon assimilation and productivity with reduced nutritional value in a well-watered C
    Habermann E; Dias de Oliveira EA; Bianconi ME; Contin DR; Lemos MTO; Costa JVCP; Oliveira KS; Riul BN; Bonifácio-Anacleto F; Viciedo DO; Approbato AU; Alzate-Marin AL; Prado RM; Costa KAP; Martinez CA
    Plant Physiol Biochem; 2024 Feb; 207():108408. PubMed ID: 38367386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trading water for carbon in the future: Effects of elevated CO
    Mueller KE; Ocheltree TW; Kray JA; Bushey JA; Blumenthal DM; Williams DG; Pendall E
    Glob Chang Biol; 2022 Oct; 28(20):5991-6001. PubMed ID: 35751572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental Air Warming of a
    Gonzalez-Meler MA; Silva LB; Dias-De-Oliveira E; Flower CE; Martinez CA
    Front Plant Sci; 2017; 8():46. PubMed ID: 28203240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Industrial-age changes in atmospheric [CO2] and temperature differentially alter responses of faster- and slower-growing Eucalyptus seedlings to short-term drought.
    Lewis JD; Smith RA; Ghannoum O; Logan BA; Phillips NG; Tissue DT
    Tree Physiol; 2013 May; 33(5):475-88. PubMed ID: 23677118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Soil phosphorous and endogenous rhythms exert a larger impact than CO2 or temperature on nocturnal stomatal conductance in Eucalyptus tereticornis.
    de Dios VR; Turnbull MH; Barbour MM; Ontedhu J; Ghannoum O; Tissue DT
    Tree Physiol; 2013 Nov; 33(11):1206-15. PubMed ID: 24271087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lower responsiveness of canopy evapotranspiration rate than of leaf stomatal conductance to open-air CO2 elevation in rice.
    Shimono H; Nakamura H; Hasegawa T; Okada M
    Glob Chang Biol; 2013 Aug; 19(8):2444-53. PubMed ID: 23564676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.