BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 31214216)

  • 1. Growth Light Environment Changes the Sensitivity of Photosystem I Photoinhibition Depending on Common Wheat Cultivars.
    Takagi D; Ihara H; Takumi S; Miyake C
    Front Plant Sci; 2019; 10():686. PubMed ID: 31214216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low N level increases the susceptibility of PSI to photoinhibition induced by short repetitive flashes in leaves of different rice varieties.
    Ozaki H; Takagi D; Mizokami Y; Tokida T; Nakamura H; Sakai H; Hasegawa T; Noguchi K
    Physiol Plant; 2022 Mar; 174(2):e13644. PubMed ID: 35112363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diversity of strategies for escaping reactive oxygen species production within photosystem I among land plants: P700 oxidation system is prerequisite for alleviating photoinhibition in photosystem I.
    Takagi D; Ishizaki K; Hanawa H; Mabuchi T; Shimakawa G; Yamamoto H; Miyake C
    Physiol Plant; 2017 Sep; 161(1):56-74. PubMed ID: 28295410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photorespiration Alleviates Photoinhibition of Photosystem I under Fluctuating Light in Tomato.
    Shi Q; Sun H; Timm S; Zhang S; Huang W
    Plants (Basel); 2022 Jan; 11(2):. PubMed ID: 35050082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superoxide and Singlet Oxygen Produced within the Thylakoid Membranes Both Cause Photosystem I Photoinhibition.
    Takagi D; Takumi S; Hashiguchi M; Sejima T; Miyake C
    Plant Physiol; 2016 Jul; 171(3):1626-34. PubMed ID: 26936894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of growth light environment on oxygen sensitivity in rice: Pseudo-first-order response of photosystem I photoinhibition to O
    Takagi D; Tani S
    Physiol Plant; 2023; 175(5):e14009. PubMed ID: 37882280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photosystem II photoinhibition-repair cycle protects Photosystem I from irreversible damage.
    Tikkanen M; Mekala NR; Aro EM
    Biochim Biophys Acta; 2014 Jan; 1837(1):210-5. PubMed ID: 24161359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Moderate Photoinhibition of Photosystem II Protects Photosystem I from Photodamage at Chilling Stress in Tobacco Leaves.
    Huang W; Yang YJ; Hu H; Zhang SB
    Front Plant Sci; 2016; 7():182. PubMed ID: 26941755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accounting for photosystem I photoinhibition sheds new light on seasonal acclimation strategies of boreal conifers.
    Grebe S; Porcar-Castell A; Riikonen A; Paakkarinen V; Aro EM
    J Exp Bot; 2024 Apr; ():. PubMed ID: 38572950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Seasonal variations in photosystem I compared with photosystem II of three alpine evergreen broad-leaf tree species.
    Huang W; Yang YJ; Hu H; Zhang SB
    J Photochem Photobiol B; 2016 Dec; 165():71-79. PubMed ID: 27768955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The higher sensitivity of PSI to ROS results in lower chilling-light tolerance of photosystems in young leaves of cucumber.
    Zhang ZS; Yang C; Gao HY; Zhang LT; Fan XL; Liu MJ
    J Photochem Photobiol B; 2014 Aug; 137():127-34. PubMed ID: 24754967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High temperature specifically affects the photoprotective responses of chlorophyll b-deficient wheat mutant lines.
    Brestic M; Zivcak M; Kunderlikova K; Allakhverdiev SI
    Photosynth Res; 2016 Dec; 130(1-3):251-266. PubMed ID: 27023107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissecting photosynthetic electron transport and photosystems performance in Jerusalem artichoke (
    Yan K; Mei H; Dong X; Zhou S; Cui J; Sun Y
    Front Plant Sci; 2022; 13():905100. PubMed ID: 35968142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repetitive short-pulse light mainly inactivates photosystem I in sunflower leaves.
    Sejima T; Takagi D; Fukayama H; Makino A; Miyake C
    Plant Cell Physiol; 2014 Jun; 55(6):1184-93. PubMed ID: 24793753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aluminum resistance in wheat involves maintenance of leaf Ca(2+) and Mg(2+) content, decreased lipid peroxidation and Al accumulation, and low photosystem II excitation pressure.
    Moustaka J; Ouzounidou G; Bayçu G; Moustakas M
    Biometals; 2016 Aug; 29(4):611-23. PubMed ID: 27188757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Excess copper predisposes photosystem II to photoinhibition in vivo by outcompeting iron and causing decrease in leaf chlorophyll.
    Pätsikkä E; Kairavuo M; Sersen F; Aro EM; Tyystjärvi E
    Plant Physiol; 2002 Jul; 129(3):1359-67. PubMed ID: 12114589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of Leaf Angle Protects Photosystem I under Fluctuating Light in Tobacco Young Leaves.
    Zeng ZL; Sun H; Wang XQ; Zhang SB; Huang W
    Cells; 2022 Jan; 11(2):. PubMed ID: 35053368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoinhibition of photosystem I under high light in the shade-established tropical tree species Psychotria rubra.
    Huang W; Zhang SB; Zhang JL; Hu H
    Front Plant Sci; 2015; 6():801. PubMed ID: 26483816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superoxide generated in the chloroplast stroma causes photoinhibition of photosystem I in the shade-establishing tree species Psychotria henryi.
    Huang W; Yang YJ; Zhang JL; Hu H; Zhang SB
    Photosynth Res; 2017 Jun; 132(3):293-303. PubMed ID: 28432538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoinhibition of photosystem I in Nephrolepis falciformis depends on reactive oxygen species generated in the chloroplast stroma.
    Huang W; Tikkanen M; Zhang SB
    Photosynth Res; 2018 Jul; 137(1):129-140. PubMed ID: 29357086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.