These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

414 related articles for article (PubMed ID: 31214228)

  • 1. Crop Phenomics: Current Status and Perspectives.
    Zhao C; Zhang Y; Du J; Guo X; Wen W; Gu S; Wang J; Fan J
    Front Plant Sci; 2019; 10():714. PubMed ID: 31214228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crop Phenomics and High-Throughput Phenotyping: Past Decades, Current Challenges, and Future Perspectives.
    Yang W; Feng H; Zhang X; Zhang J; Doonan JH; Batchelor WD; Xiong L; Yan J
    Mol Plant; 2020 Feb; 13(2):187-214. PubMed ID: 31981735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Applications of Artificial Intelligence in Climate-Resilient Smart-Crop Breeding.
    Khan MHU; Wang S; Wang J; Ahmar S; Saeed S; Khan SU; Xu X; Chen H; Bhat JA; Feng X
    Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-throughput phenotyping for crop improvement in the genomics era.
    Mir RR; Reynolds M; Pinto F; Khan MA; Bhat MA
    Plant Sci; 2019 May; 282():60-72. PubMed ID: 31003612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modern phenomics to empower holistic crop science, agronomy, and breeding research.
    Jiang N; Zhu XG
    J Genet Genomics; 2024 May; ():. PubMed ID: 38734136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proximal and remote sensing in plant phenomics: 20 years of progress, challenges, and perspectives.
    Tao H; Xu S; Tian Y; Li Z; Ge Y; Zhang J; Wang Y; Zhou G; Deng X; Zhang Z; Ding Y; Jiang D; Guo Q; Jin S
    Plant Commun; 2022 Nov; 3(6):100344. PubMed ID: 35655429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Field crop phenomics: enabling breeding for radiation use efficiency and biomass in cereal crops.
    Furbank RT; Jimenez-Berni JA; George-Jaeggli B; Potgieter AB; Deery DM
    New Phytol; 2019 Sep; 223(4):1714-1727. PubMed ID: 30937909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unmanned Aerial Vehicle Remote Sensing for Field-Based Crop Phenotyping: Current Status and Perspectives.
    Yang G; Liu J; Zhao C; Li Z; Huang Y; Yu H; Xu B; Yang X; Zhu D; Zhang X; Zhang R; Feng H; Zhao X; Li Z; Li H; Yang H
    Front Plant Sci; 2017; 8():1111. PubMed ID: 28713402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Review: Application of Artificial Intelligence in Phenomics.
    Nabwire S; Suh HK; Kim MS; Baek I; Cho BK
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34202291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plant phenomics and high-throughput phenotyping: accelerating rice functional genomics using multidisciplinary technologies.
    Yang W; Duan L; Chen G; Xiong L; Liu Q
    Curr Opin Plant Biol; 2013 May; 16(2):180-7. PubMed ID: 23578473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Throughput Plant Phenotyping Platform (HT3P) as a Novel Tool for Estimating Agronomic Traits From the Lab to the Field.
    Li D; Quan C; Song Z; Li X; Yu G; Li C; Muhammad A
    Front Bioeng Biotechnol; 2020; 8():623705. PubMed ID: 33520974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Throughput Phenotyping Methods for Breeding Drought-Tolerant Crops.
    Kim M; Lee C; Hong S; Kim SL; Baek JH; Kim KH
    Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34361030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plant phenomics: High-throughput technology for accelerating genomics.
    Pasala R; Pandey BB
    J Biosci; 2020; 45():. PubMed ID: 32975238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genebank Phenomics: A Strategic Approach to Enhance Value and Utilization of Crop Germplasm.
    Nguyen GN; Norton SL
    Plants (Basel); 2020 Jun; 9(7):. PubMed ID: 32610615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Omics-Facilitated Crop Improvement for Climate Resilience and Superior Nutritive Value.
    Zenda T; Liu S; Dong A; Li J; Wang Y; Liu X; Wang N; Duan H
    Front Plant Sci; 2021; 12():774994. PubMed ID: 34925418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Applications of Multi-Omics Technologies for Crop Improvement.
    Yang Y; Saand MA; Huang L; Abdelaal WB; Zhang J; Wu Y; Li J; Sirohi MH; Wang F
    Front Plant Sci; 2021; 12():563953. PubMed ID: 34539683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plant phenomics and the need for physiological phenotyping across scales to narrow the genotype-to-phenotype knowledge gap.
    Großkinsky DK; Svensgaard J; Christensen S; Roitsch T
    J Exp Bot; 2015 Sep; 66(18):5429-40. PubMed ID: 26163702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Utilization of Spectral Indices for High-Throughput Phenotyping.
    Tayade R; Yoon J; Lay L; Khan AL; Yoon Y; Kim Y
    Plants (Basel); 2022 Jun; 11(13):. PubMed ID: 35807664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of an intelligent artificial climate chamber for high-throughput crop phenotyping in wheat.
    Ren A; Jiang D; Kang M; Wu J; Xiao F; Hou P; Fu X
    Plant Methods; 2022 Jun; 18(1):77. PubMed ID: 35672714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.