These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 31214229)

  • 1. Peach Fruit Development: A Comparative Proteomic Study Between Endocarp and Mesocarp at Very Early Stages Underpins the Main Differential Biochemical Processes Between These Tissues.
    Rodriguez CE; Bustamante CA; Budde CO; Müller GL; Drincovich MF; Lara MV
    Front Plant Sci; 2019; 10():715. PubMed ID: 31214229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomic analysis of peach endocarp and mesocarp during early fruit development.
    Hu H; Liu Y; Shi GL; Liu YP; Wu RJ; Yang AZ; Wang YM; Hua BG; Wang YN
    Physiol Plant; 2011 Aug; 142(4):390-406. PubMed ID: 21496031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stone formation in peach fruit exhibits spatial coordination of the lignin and flavonoid pathways and similarity to Arabidopsis dehiscence.
    Dardick CD; Callahan AM; Chiozzotto R; Schaffer RJ; Piagnani MC; Scorza R
    BMC Biol; 2010 Feb; 8():13. PubMed ID: 20144217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peach fruit ripening: A proteomic comparative analysis of the mesocarp of two cultivars with different flesh firmness at two ripening stages.
    Prinsi B; Negri AS; Fedeli C; Morgutti S; Negrini N; Cocucci M; Espen L
    Phytochemistry; 2011 Jul; 72(10):1251-62. PubMed ID: 21315381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of peroxidases in lignifying peach fruit endocarp.
    Abeles FB; Biles CL
    Plant Physiol; 1991 Jan; 95(1):269-73. PubMed ID: 16667963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic profiling during peach fruit development and ripening reveals the metabolic networks that underpin each developmental stage.
    Lombardo VA; Osorio S; Borsani J; Lauxmann MA; Bustamante CA; Budde CO; Andreo CS; Lara MV; Fernie AR; Drincovich MF
    Plant Physiol; 2011 Dec; 157(4):1696-710. PubMed ID: 22021422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The KNOTTED-like genes of peach (Prunus persica L. Batsch) are differentially expressed during drupe growth and the class 1 KNOPE1 contributes to mesocarp development.
    Testone G; Condello E; Di Giacomo E; Nicolodi C; Caboni E; Rasori A; Bonghi C; Bruno L; Bitonti MB; Giannino D
    Plant Sci; 2015 Aug; 237():69-79. PubMed ID: 26089153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The peach HECATE3-like gene FLESHY plays a double role during fruit development.
    Botton A; Rasori A; Ziliotto F; Moing A; Maucourt M; Bernillon S; Deborde C; Petterle A; Varotto S; Bonghi C
    Plant Mol Biol; 2016 May; 91(1-2):97-114. PubMed ID: 26846510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A microarray approach to identify genes involved in seed-pericarp cross-talk and development in peach.
    Bonghi C; Trainotti L; Botton A; Tadiello A; Rasori A; Ziliotto F; Zaffalon V; Casadoro G; Ramina A
    BMC Plant Biol; 2011 Jun; 11():107. PubMed ID: 21679395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The study of a SPATULA-like bHLH transcription factor expressed during peach (Prunus persica) fruit development.
    Tani E; Tsaballa A; Stedel C; Kalloniati C; Papaefthimiou D; Polidoros A; Darzentas N; Ganopoulos I; Flemetakis E; Katinakis P; Tsaftaris A
    Plant Physiol Biochem; 2011 Jun; 49(6):654-63. PubMed ID: 21324706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative transcripts profiling of fruit mesocarp and endocarp relevant to secondary metabolism by suppression subtractive hybridization in Azadirachta indica (neem).
    Narnoliya LK; Rajakani R; Sangwan NS; Gupta V; Sangwan RS
    Mol Biol Rep; 2014 May; 41(5):3147-62. PubMed ID: 24477588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acyl-CoA oxidase 1 is involved in γ-decalactone release from peach (Prunus persica) fruit.
    Zhang L; Li H; Gao L; Qi Y; Fu W; Li X; Zhou X; Gao Q; Gao Z; Jia H
    Plant Cell Rep; 2017 Jun; 36(6):829-842. PubMed ID: 28238071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water deficit-induced changes in mesocarp cellular processes and the relationship between mesocarp and endocarp during olive fruit development.
    Gucci R; Lodolini EM; Rapoport HF
    Tree Physiol; 2009 Dec; 29(12):1575-85. PubMed ID: 19825868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential expression of alpha-l-arabinofuranosidase and alpha-l-arabinofuranosidase/beta-d-xylosidase genes during peach growth and ripening.
    Carolina Di Santo M; Pagano EA; Sozzi GO
    Plant Physiol Biochem; 2009 Jul; 47(7):562-9. PubMed ID: 19303789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relative quantification of phenolic compounds in exocarp-mesocarp and endocarp of sumac (Toxicodendron vernicifluum) combined with transcriptome analysis provides insights into glycosylation of flavonoids and biflavonoid biosynthesis.
    Han F; Zhang Q; Ding R; Wang J; Wu H; Zhao A
    Plant Physiol Biochem; 2023 Feb; 195():275-287. PubMed ID: 36652849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flower fertilization and fruit development prompt changes in free polyamines and ethylene in damson plum (Prunus insititia L.).
    de Dios P; Matilla AJ; Gallardo M
    J Plant Physiol; 2006 Jan; 163(1):86-97. PubMed ID: 16360807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cinnamyl alcohol dehydrogenases in the mesocarp of ripening fruit of Prunus persica genotypes with different flesh characteristics: changes in activity and protein and transcript levels.
    Gabotti D; Negrini N; Morgutti S; Nocito FF; Cocucci M
    Physiol Plant; 2015 Jul; 154(3):329-48. PubMed ID: 25534876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of JrLACs in the lignification of walnut endocarp.
    Li P; Wang H; Liu P; Li Y; Liu K; An X; Zhang Z; Zhao S
    BMC Plant Biol; 2021 Nov; 21(1):511. PubMed ID: 34732134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon sufficiency boosts phenylpropanoid biosynthesis early in peach fruit development priming superior fruit quality.
    Anthony BM; Chaparro JM; Prenni JE; Minas IS
    Plant Physiol Biochem; 2023 Mar; 196():1019-1031. PubMed ID: 36898214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Association of lignifying enzymes in shell synthesis of oil palm fruit (Elaeis guineensis--dura variety).
    Bhasker S; Mohankumar C
    Indian J Exp Biol; 2001 Feb; 39(2):160-4. PubMed ID: 11480213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.