BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 31214669)

  • 1. 3D-printing enabled micro-assembly of a microfluidic electroporation system for 3D tissue engineering.
    Zhu Q; Hamilton M; Vasquez B; He M
    Lab Chip; 2019 Jul; 19(14):2362-2372. PubMed ID: 31214669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic electro-sonoporation: a multi-modal cell poration methodology through simultaneous application of electric field and ultrasonic wave.
    Longsine-Parker W; Wang H; Koo C; Kim J; Kim B; Jayaraman A; Han A
    Lab Chip; 2013 Jun; 13(11):2144-52. PubMed ID: 23615834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogel-Assisted Double Molding Enables Rapid Replication of Stereolithographic 3D Prints for Engineered Tissue Design.
    Simmons DW; Schuftan DR; Ramahdita G; Huebsch N
    ACS Appl Mater Interfaces; 2023 May; 15(21):25313-25323. PubMed ID: 37200617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile Route for 3D Printing of Transparent PETg-Based Hybrid Biomicrofluidic Devices Promoting Cell Adhesion.
    Mehta V; Vilikkathala Sudhakaran S; Rath SN
    ACS Biomater Sci Eng; 2021 Aug; 7(8):3947-3963. PubMed ID: 34282888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advancing Tissue Culture with Light-Driven 3D-Printed Microfluidic Devices.
    Li X; Wang M; Davis TP; Zhang L; Qiao R
    Biosensors (Basel); 2024 Jun; 14(6):. PubMed ID: 38920605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of electrospinning and dynamic air focusing to create three-dimensional cell culture scaffolds in microfluidic devices.
    Chen C; Mehl BT; Sell SA; Martin RS
    Analyst; 2016 Sep; 141(18):5311-20. PubMed ID: 27373715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering a dynamic three-dimensional cell culturing microenvironment using a 'sandwich' structure-liked microfluidic device with 3D printing scaffold.
    Ding L; Liu C; Yin S; Zhou Z; Chen J; Chen X; Chen L; Wang D; Liu B; Liu Y; Wei J; Li J
    Biofabrication; 2022 Sep; 14(4):. PubMed ID: 35973411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel electroporation system for efficient molecular delivery into Chlamydomonas reinhardtii with a 3-dimensional microelectrode.
    Kang S; Kim KH; Kim YC
    Sci Rep; 2015 Nov; 5():15835. PubMed ID: 26522846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards Single-Step Biofabrication of Organs on a Chip via 3D Printing.
    Knowlton S; Yenilmez B; Tasoglu S
    Trends Biotechnol; 2016 Sep; 34(9):685-688. PubMed ID: 27424152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D printed mold leachates in PDMS microfluidic devices.
    de Almeida Monteiro Melo Ferraz M; Nagashima JB; Venzac B; Le Gac S; Songsasen N
    Sci Rep; 2020 Jan; 10(1):994. PubMed ID: 31969661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell electroporation with a three-dimensional microelectrode array on a printed circuit board.
    Xu Y; Su S; Zhou C; Lu Y; Xing W
    Bioelectrochemistry; 2015 Apr; 102():35-41. PubMed ID: 25483998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanofountain Probe Electroporation for Monoclonal Cell Line Generation.
    Espinosa HD; Mukherjee P; Patino C
    Methods Mol Biol; 2020; 2050():59-68. PubMed ID: 31468479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A low-cost smartphone controlled portable system with accurately confined on-chip 3D electrodes for flow-through cell electroporation.
    Han C; He X; Wang J; Gao L; Yang G; Li D; Wang S; Chen X; Peng Z
    Bioelectrochemistry; 2020 Aug; 134():107486. PubMed ID: 32179452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microtrap array on a chip for localized electroporation and electro-gene transfection.
    Muralidharan A; Pesch GR; Hubbe H; Rems L; Nouri-Goushki M; Boukany PE
    Bioelectrochemistry; 2022 Oct; 147():108197. PubMed ID: 35810498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequential assembly of 3D perfusable microfluidic hydrogels.
    He J; Zhu L; Liu Y; Li D; Jin Z
    J Mater Sci Mater Med; 2014 Nov; 25(11):2491-500. PubMed ID: 25027302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-Dimensional Printing and Injectable Conductive Hydrogels for Tissue Engineering Application.
    Jiang L; Wang Y; Liu Z; Ma C; Yan H; Xu N; Gang F; Wang X; Zhao L; Sun X
    Tissue Eng Part B Rev; 2019 Oct; 25(5):398-411. PubMed ID: 31115274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D Printed Chitosan Composite Scaffold for Chondrocytes Differentiation.
    Sahai N; Gogoi M; Tewari RP
    Curr Med Imaging; 2021; 17(7):832-842. PubMed ID: 33334294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly uniform in-situ cell electrotransfection of adherent cultures using grouped interdigitated electrodes.
    Zhou Y; Lu Y; Cheng J; Xu Y
    Bioelectrochemistry; 2020 Apr; 132():107435. PubMed ID: 31855831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D printing of biomimetic microstructures for cancer cell migration.
    Huang TQ; Qu X; Liu J; Chen S
    Biomed Microdevices; 2014 Feb; 16(1):127-32. PubMed ID: 24150602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of cell growth on 3D-printed cell culture platforms for tissue engineering.
    Tan Z; Liu T; Zhong J; Yang Y; Tan W
    J Biomed Mater Res A; 2017 Dec; 105(12):3281-3292. PubMed ID: 28865175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.