BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 31214991)

  • 1. Respiratory Membrane Protein Complexes Convert Chemical Energy.
    Muras V; Toulouse C; Fritz G; Steuber J
    Subcell Biochem; 2019; 92():301-335. PubMed ID: 31214991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioenergetic aspects of archaeal and bacterial hydrogen metabolism.
    Pinske C
    Adv Microb Physiol; 2019; 74():487-514. PubMed ID: 31126536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sodium as Coupling Cation in Respiratory Energy Conversion.
    Fritz G; Steuber J
    Met Ions Life Sci; 2016; 16():349-90. PubMed ID: 26860307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial transport: adaptations to natural environments.
    Konings WN
    Antonie Van Leeuwenhoek; 2006 Nov; 90(4):325-42. PubMed ID: 17043914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring membrane respiratory chains.
    Marreiros BC; Calisto F; Castro PJ; Duarte AM; Sena FV; Silva AF; Sousa FM; Teixeira M; Refojo PN; Pereira MM
    Biochim Biophys Acta; 2016 Aug; 1857(8):1039-1067. PubMed ID: 27044012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy-converting hydrogenases: the link between H
    Schoelmerich MC; Müller V
    Cell Mol Life Sci; 2020 Apr; 77(8):1461-1481. PubMed ID: 31630229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The plethora of membrane respiratory chains in the phyla of life.
    Refojo PN; Sena FV; Calisto F; Sousa FM; Pereira MM
    Adv Microb Physiol; 2019; 74():331-414. PubMed ID: 31126533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of membrane bioenergetics.
    Wilson TH; Lin EC
    J Supramol Struct; 1980; 13(4):421-46. PubMed ID: 6453255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supramolecular organization of bacterial aerobic respiratory chains: From cells and back.
    Melo AM; Teixeira M
    Biochim Biophys Acta; 2016 Mar; 1857(3):190-7. PubMed ID: 26546715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The organisation of proton motive and non-proton motive redox loops in prokaryotic respiratory systems.
    Simon J; van Spanning RJ; Richardson DJ
    Biochim Biophys Acta; 2008 Dec; 1777(12):1480-90. PubMed ID: 18930017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mechanism of coupling between oxido-reduction and proton translocation in respiratory chain enzymes.
    Papa S; Capitanio G; Papa F
    Biol Rev Camb Philos Soc; 2018 Feb; 93(1):322-349. PubMed ID: 28639360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and bacteria.
    Amend JP; Shock EL
    FEMS Microbiol Rev; 2001 Apr; 25(2):175-243. PubMed ID: 11250035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phylogenomic analysis and predicted physiological role of the proton-translocating NADH:quinone oxidoreductase (complex I) across bacteria.
    Spero MA; Aylward FO; Currie CR; Donohue TJ
    mBio; 2015 Apr; 6(2):. PubMed ID: 25873378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal changes in fluid chemistry and energy profiles in the vulcano island hydrothermal system.
    Rogers KL; Amend JP; Gurrieri S
    Astrobiology; 2007 Dec; 7(6):905-32. PubMed ID: 18163870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The origin of membrane bioenergetics.
    Lane N; Martin WF
    Cell; 2012 Dec; 151(7):1406-16. PubMed ID: 23260134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The respiratory complex I of bacteria, archaea and eukarya and its module common with membrane-bound multisubunit hydrogenases.
    Friedrich T; Scheide D
    FEBS Lett; 2000 Aug; 479(1-2):1-5. PubMed ID: 10940377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A reductant-induced oxidation mechanism for complex I.
    Dutton PL; Moser CC; Sled VD; Daldal F; Ohnishi T
    Biochim Biophys Acta; 1998 May; 1364(2):245-57. PubMed ID: 9593917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the origin of respiration: electron transport proteins from archaea to man.
    Schäfer G; Purschke W; Schmidt CL
    FEMS Microbiol Rev; 1996 May; 18(2-3):173-88. PubMed ID: 8639327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemiosmotic energy conversion of the archaebacterial thermoacidophile Sulfolobus acidocaldarius: oxidative phosphorylation and the presence of an F0-related N,N'-dicyclohexylcarbodiimide-binding proteolipid.
    Lübben M; Schäfer G
    J Bacteriol; 1989 Nov; 171(11):6106-16. PubMed ID: 2478523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phospholipids and glycolipids mediate proton containment and circulation along the surface of energy-transducing membranes.
    Yoshinaga MY; Kellermann MY; Valentine DL; Valentine RC
    Prog Lipid Res; 2016 Oct; 64():1-15. PubMed ID: 27448687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.