These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 31215363)

  • 1. Antimicrobial Peptides - Small but Mighty Weapons for Plants to Fight Phytopathogens.
    Das K; Datta K; Karmakar S; Datta SK
    Protein Pept Lett; 2019; 26(10):720-742. PubMed ID: 31215363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antimicrobial peptides: modes of mechanism, modulation of defense responses.
    Rahnamaeian M
    Plant Signal Behav; 2011 Sep; 6(9):1325-32. PubMed ID: 21847025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance.
    Ali S; Ganai BA; Kamili AN; Bhat AA; Mir ZA; Bhat JA; Tyagi A; Islam ST; Mushtaq M; Yadav P; Rawat S; Grover A
    Microbiol Res; 2018; 212-213():29-37. PubMed ID: 29853166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plant antimicrobial peptides.
    Nawrot R; Barylski J; Nowicki G; Broniarczyk J; Buchwald W; Goździcka-Józefiak A
    Folia Microbiol (Praha); 2014 May; 59(3):181-96. PubMed ID: 24092498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antimicrobial peptide production and plant-based expression systems for medical and agricultural biotechnology.
    Holaskova E; Galuszka P; Frebort I; Oz MT
    Biotechnol Adv; 2015 Nov; 33(6 Pt 2):1005-23. PubMed ID: 25784148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Approach Towards Structure Based Antimicrobial Peptide Design for Use in Development of Transgenic Plants: A Strategy for Plant Disease Management.
    Ilyas H; Datta A; Bhunia A
    Curr Med Chem; 2017; 24(13):1350-1364. PubMed ID: 28093983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lactoferrin and its role in biotechnological strategies for plant defense against pathogens.
    Buziashvili A; Yemets A
    Transgenic Res; 2023 Apr; 32(1-2):1-16. PubMed ID: 36534334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The use of versatile plant antimicrobial peptides in agribusiness and human health.
    de Souza Cândido E; e Silva Cardoso MH; Sousa DA; Viana JC; de Oliveira-Júnior NG; Miranda V; Franco OL
    Peptides; 2014 May; 55():65-78. PubMed ID: 24548568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biotic stress resistance in agriculture through antimicrobial peptides.
    Sarika ; Iquebal MA; Rai A
    Peptides; 2012 Aug; 36(2):322-30. PubMed ID: 22659413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomolecules as host defense weapons against microbial pathogens.
    Rizza MD; Dellavalle PD; Narancio R; Cabrera A; Ferreira F
    Recent Pat DNA Gene Seq; 2008; 2(2):82-96. PubMed ID: 19075948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antimicrobial peptides and plant disease control.
    Montesinos E
    FEMS Microbiol Lett; 2007 May; 270(1):1-11. PubMed ID: 17371298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of antimicrobial peptides thanatin(S) in transgenic Arabidopsis enhanced resistance to phytopathogenic fungi and bacteria.
    Wu T; Tang D; Chen W; Huang H; Wang R; Chen Y
    Gene; 2013 Sep; 527(1):235-42. PubMed ID: 23820081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plant Antimicrobial Peptides (PAMPs): Features, Applications, Production, Expression, and Challenges.
    Bakare OO; Gokul A; Fadaka AO; Wu R; Niekerk LA; Barker AM; Keyster M; Klein A
    Molecules; 2022 Jun; 27(12):. PubMed ID: 35744828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multitasking antimicrobial peptides in plant development and host defense against biotic/abiotic stress.
    Goyal RK; Mattoo AK
    Plant Sci; 2014 Nov; 228():135-49. PubMed ID: 25438794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Properties and applications of antimicrobial peptides in biodefense against biological warfare threat agents.
    Dawson RM; Liu CQ
    Crit Rev Microbiol; 2008; 34(2):89-107. PubMed ID: 18568863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recombinant production of antimicrobial peptides in plants.
    Nazarian-Firouzabadi F; Torres MT; de la Fuente-Nunez C
    Biotechnol Adv; 2024; 71():108296. PubMed ID: 38042311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The γ-Core Motif Peptides of Plant AMPs as Novel Antimicrobials for Medicine and Agriculture.
    Slezina MP; Istomina EA; Korostyleva TV; Odintsova TI
    Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36613926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Defense peptides of plant immune system].
    Egorov TsA; Odintsova TI
    Bioorg Khim; 2012; 38(1):7-17. PubMed ID: 22792701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biotechnological Insights on the Expression and Production of Antimicrobial Peptides in Plants.
    Shanmugaraj B; Bulaon CJI; Malla A; Phoolcharoen W
    Molecules; 2021 Jul; 26(13):. PubMed ID: 34279372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of self-processing antimicrobial peptides for plant protection.
    Powell WA; Catranis CM; Maynard CA
    Lett Appl Microbiol; 2000 Aug; 31(2):163-8. PubMed ID: 10972721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.