These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
265 related articles for article (PubMed ID: 31215375)
1. QSAR Models for Predicting Aquatic Toxicity of Esters Using Genetic Algorithm-Multiple Linear Regression Methods. Rajabi M; Shafiei F Comb Chem High Throughput Screen; 2019 Aug; 22(5):317-325. PubMed ID: 31215375 [TBL] [Abstract][Full Text] [Related]
2. Quantitative Structure-Activity Relationship Study of Camptothecin Derivatives as Anticancer Drugs Using Molecular Descriptors. Ahmadinejad N; Shafiei F Comb Chem High Throughput Screen; 2019; 22(6):387-399. PubMed ID: 31284856 [TBL] [Abstract][Full Text] [Related]
3. QSPR Models to Predict Thermodynamic Properties of Cycloalkanes Using Molecular Descriptors and GA-MLR Method. Joudaki D; Shafiei F Curr Comput Aided Drug Des; 2020; 16(1):6-16. PubMed ID: 30827257 [TBL] [Abstract][Full Text] [Related]
4. Application of GA-MLR for QSAR Modeling of the Arylthioindole Class of Tubulin Polymerization Inhibitors as Anticancer Agents. Ahmadi S; Habibpour E Anticancer Agents Med Chem; 2017; 17(4):552-565. PubMed ID: 27528182 [TBL] [Abstract][Full Text] [Related]
5. Two QSAR models for predicting the toxicity of chemicals towards Jia Q; Wang S; Yu M; Wang Q; Yan F SAR QSAR Environ Res; 2023 Feb; 34(2):147-161. PubMed ID: 36749040 [TBL] [Abstract][Full Text] [Related]
6. QSTR with extended topochemical atom (ETA) indices. 12. QSAR for the toxicity of diverse aromatic compounds to Tetrahymena pyriformis using chemometric tools. Roy K; Ghosh G Chemosphere; 2009 Nov; 77(7):999-1009. PubMed ID: 19709717 [TBL] [Abstract][Full Text] [Related]
7. Prediction of aquatic toxicity of benzene derivatives using molecular descriptor from atomic weighted vectors. Martínez-López Y; Barigye SJ; Martínez-Santiago O; Marrero-Ponce Y; Green J; Castillo-Garit JA Environ Toxicol Pharmacol; 2017 Dec; 56():314-321. PubMed ID: 29091819 [TBL] [Abstract][Full Text] [Related]
8. Genetic Algorithm and Self-Organizing Maps for QSPR Study of Some N-aryl Derivatives as Butyrylcholinesterase Inhibitors. Ahmadi S; Ganji S Curr Drug Discov Technol; 2016; 13(4):232-253. PubMed ID: 27457492 [TBL] [Abstract][Full Text] [Related]
9. Prediction of the aquatic toxicity of aromatic compounds to tetrahymena pyriformis through support vector regression. Su Q; Lu W; Du D; Chen F; Niu B; Chou KC Oncotarget; 2017 Jul; 8(30):49359-49369. PubMed ID: 28467816 [TBL] [Abstract][Full Text] [Related]
10. Combinatorial QSAR modeling of chemical toxicants tested against Tetrahymena pyriformis. Zhu H; Tropsha A; Fourches D; Varnek A; Papa E; Gramatica P; Oberg T; Dao P; Cherkasov A; Tetko IV J Chem Inf Model; 2008 Apr; 48(4):766-84. PubMed ID: 18311912 [TBL] [Abstract][Full Text] [Related]
11. Modeling Physico-Chemical Properties of Quinolone Derivatives Using GA-MLR as a Computational Study. Shirmohammadi M; Mohammadinasab E; Bayat Z Curr Comput Aided Drug Des; 2020; 16(6):667-681. PubMed ID: 31830893 [TBL] [Abstract][Full Text] [Related]
12. Application of a genetic algorithm and an artificial neural network for global prediction of the toxicity of phenols to Habibi-Yangjeh A; Danandeh-Jenagharad M Monatsh Chem; 2009; 140(11):1279-1288. PubMed ID: 26166848 [TBL] [Abstract][Full Text] [Related]
13. An Electronic-structure Informatics Study on the Toxicity of Alkylphenols to Tetrahymena pyriformis. Sugimoto M; Manggara AB; Yoshida K; Inoue T; Ideo T Mol Inform; 2020 Jan; 39(1-2):e1900121. PubMed ID: 31930704 [TBL] [Abstract][Full Text] [Related]
14. Ranking of aquatic toxicity of esters modelled by QSAR. Papa E; Battaini F; Gramatica P Chemosphere; 2005 Feb; 58(5):559-70. PubMed ID: 15620749 [TBL] [Abstract][Full Text] [Related]
15. QSAR analysis of the acute toxicity of avermectins towards Tinkov OV; Grigorev VY; Grigoreva LD SAR QSAR Environ Res; 2021 Jul; 32(7):541-571. PubMed ID: 34157880 [TBL] [Abstract][Full Text] [Related]
16. Prediction of Aquatic Toxicity of Benzene Derivatives to Tetrahymena pyriformis According to OECD Principles. Castillo-Garit JA; Abad C; Casañola-Martin GM; Barigye SJ; Torrens F; Torreblanca A Curr Pharm Des; 2016; 22(33):5085-5094. PubMed ID: 27568732 [TBL] [Abstract][Full Text] [Related]
17. Estimation of the Toxicity of Different Substituted Aromatic Compounds to the Aquatic Ciliate Luan F; Wang T; Tang L; Zhang S; Cordeiro MNDS Molecules; 2018 Apr; 23(5):. PubMed ID: 29695132 [TBL] [Abstract][Full Text] [Related]
18. Modeling the toxicity of chemicals to Tetrahymena pyriformis using heuristic multilinear regression and heuristic back-propagation neural networks. Kahn I; Sild S; Maran U J Chem Inf Model; 2007; 47(6):2271-9. PubMed ID: 17985864 [TBL] [Abstract][Full Text] [Related]
19. QSAR with quantum topological molecular similarity indices: toxicity of aromatic aldehydes to Tetrahymena pyriformis. Kar S; Harding AP; Roy K; Popelier PL SAR QSAR Environ Res; 2010 Jan; 21(1):149-68. PubMed ID: 20373218 [TBL] [Abstract][Full Text] [Related]
20. In silico prediction of toxicity of phenols to Tetrahymena pyriformis by using genetic algorithm and decision tree-based modeling approach. Abbasitabar F; Zare-Shahabadi V Chemosphere; 2017 Apr; 172():249-259. PubMed ID: 28081509 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]