These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
298 related articles for article (PubMed ID: 31215396)
1. A transcriptome analysis reveals a role for the indole GLS-linked auxin biosynthesis in secondary dormancy in rapeseed (Brassica napus L.). Liu L; Liu F; Chu J; Yi X; Fan W; Tang T; Chen G; Guo Q; Zhao X BMC Plant Biol; 2019 Jun; 19(1):264. PubMed ID: 31215396 [TBL] [Abstract][Full Text] [Related]
2. Genome-wide analysis of the auxin/indoleacetic acid (Aux/IAA) gene family in allotetraploid rapeseed (Brassica napus L.). Li H; Wang B; Zhang Q; Wang J; King GJ; Liu K BMC Plant Biol; 2017 Nov; 17(1):204. PubMed ID: 29145811 [TBL] [Abstract][Full Text] [Related]
3. Early Establishment of Photosynthesis and Auxin Biosynthesis Plays a Key Role in Early Biomass Heterosis in Brassica napus (Canola) Hybrids. Zhu A; Wang A; Zhang Y; Dennis ES; Peacock WJ; Greaves AIK Plant Cell Physiol; 2020 Jun; 61(6):1134-1143. PubMed ID: 32215572 [TBL] [Abstract][Full Text] [Related]
4. Exogenous auxin regulates multi-metabolic network and embryo development, controlling seed secondary dormancy and germination in Nicotiana tabacum L. Li Z; Zhang J; Liu Y; Zhao J; Fu J; Ren X; Wang G; Wang J BMC Plant Biol; 2016 Feb; 16():41. PubMed ID: 26860357 [TBL] [Abstract][Full Text] [Related]
5. Transcriptomics of cytokinin and auxin metabolism and signaling genes during seed maturation in dormant and non-dormant wheat genotypes. Tuan PA; Yamasaki Y; Kanno Y; Seo M; Ayele BT Sci Rep; 2019 Mar; 9(1):3983. PubMed ID: 30850728 [TBL] [Abstract][Full Text] [Related]
7. Auxin Produced by the Indole-3-Pyruvic Acid Pathway Regulates Development and Gemmae Dormancy in the Liverwort Marchantia polymorpha. Eklund DM; Ishizaki K; Flores-Sandoval E; Kikuchi S; Takebayashi Y; Tsukamoto S; Hirakawa Y; Nonomura M; Kato H; Kouno M; Bhalerao RP; Lagercrantz U; Kasahara H; Kohchi T; Bowman JL Plant Cell; 2015 Jun; 27(6):1650-69. PubMed ID: 26036256 [TBL] [Abstract][Full Text] [Related]
8. Comprehensive profiling of alternative splicing landscape during secondary dormancy in oilseed rape ( Liu L; Wu D; Gu Y; Liu F; Liu B; Mao F; Yi X; Tang T; Zhao X Mol Breed; 2022 Aug; 42(8):44. PubMed ID: 37313517 [TBL] [Abstract][Full Text] [Related]
9. Transcriptomic comparison between developing seeds of yellow- and black-seeded Brassica napus reveals that genes influence seed quality. Jiang J; Zhu S; Yuan Y; Wang Y; Zeng L; Batley J; Wang YP BMC Plant Biol; 2019 May; 19(1):203. PubMed ID: 31096923 [TBL] [Abstract][Full Text] [Related]
10. Transcriptomic analysis reveals the mechanism of thermosensitive genic male sterility (TGMS) of Brassica napus under the high temperature inducement. Tang X; Hao YJ; Lu JX; Lu G; Zhang T BMC Genomics; 2019 Aug; 20(1):644. PubMed ID: 31409283 [TBL] [Abstract][Full Text] [Related]
11. Transcriptome analysis of Brassica napus pod using RNA-Seq and identification of lipid-related candidate genes. Xu HM; Kong XD; Chen F; Huang JX; Lou XY; Zhao JY BMC Genomics; 2015 Oct; 16():858. PubMed ID: 26499887 [TBL] [Abstract][Full Text] [Related]
12. Auxin biosynthesis in the phytopathogenic fungus Leptosphaeria maculans is associated with enhanced transcription of indole-3-pyruvate decarboxylase LmIPDC2 and tryptophan aminotransferase LmTAM1. Leontovyčová H; Trdá L; Dobrev PI; Šašek V; Gay E; Balesdent MH; Burketová L Res Microbiol; 2020; 171(5-6):174-184. PubMed ID: 32540203 [TBL] [Abstract][Full Text] [Related]
13. Morphological, transcriptomics and biochemical characterization of new dwarf mutant of Brassica napus. Wei C; Zhu L; Wen J; Yi B; Ma C; Tu J; Shen J; Fu T Plant Sci; 2018 May; 270():97-113. PubMed ID: 29576090 [TBL] [Abstract][Full Text] [Related]
14. Patatin-related phospholipase pPLAIIIδ influences auxin-responsive cell morphology and organ size in Arabidopsis and Brassica napus. Dong Y; Li M; Zhang P; Wang X; Fan C; Zhou Y BMC Plant Biol; 2014 Nov; 14():332. PubMed ID: 25428555 [TBL] [Abstract][Full Text] [Related]
15. Dynamics of seed dormancy and germination at high temperature stress is affected by priming and phytohormones in rapeseed (Brassica napus L.). Malek M; Ghaderi-Far F; Torabi B; Sadeghipour HR J Plant Physiol; 2022 Feb; 269():153614. PubMed ID: 34979489 [TBL] [Abstract][Full Text] [Related]
16. Impacts of fire cues on germination of Brassica napus L. seeds with high and low secondary dormancy. Shayanfar A; Ghaderi-Far F; Behmaram R; Soltani A; Sadeghipour HR Plant Biol (Stuttg); 2020 Jul; 22(4):647-654. PubMed ID: 32215992 [TBL] [Abstract][Full Text] [Related]
17. Auxin Biosynthesis, Accumulation, Action and Transport are Involved in Stress-Induced Microspore Embryogenesis Initiation and Progression in Brassica napus. Rodríguez-Sanz H; Solís MT; López MF; Gómez-Cadenas A; Risueño MC; Testillano PS Plant Cell Physiol; 2015 Jul; 56(7):1401-17. PubMed ID: 25907568 [TBL] [Abstract][Full Text] [Related]
18. Altered seed oil and glucosinolate levels in transgenic plants overexpressing the Brassica napus SHOOTMERISTEMLESS gene. Elhiti M; Yang C; Chan A; Durnin DC; Belmonte MF; Ayele BT; Tahir M; Stasolla C J Exp Bot; 2012 Jul; 63(12):4447-61. PubMed ID: 22563121 [TBL] [Abstract][Full Text] [Related]
19. Transcriptomic profiling and discovery of key genes involved in adventitious root formation from green cuttings of highbush blueberry (Vaccinium corymbosum L.). An H; Zhang J; Xu F; Jiang S; Zhang X BMC Plant Biol; 2020 Apr; 20(1):182. PubMed ID: 32334538 [TBL] [Abstract][Full Text] [Related]
20. Comparative Transcriptome Analysis of Developing Seeds and Silique Wall Reveals Dynamic Transcription Networks for Effective Oil Production in Shahid M; Cai G; Zu F; Zhao Q; Qasim MU; Hong Y; Fan C; Zhou Y Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 31018533 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]