These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
298 related articles for article (PubMed ID: 31215396)
21. Transcriptome Profile Analysis of Winter Rapeseed ( Pu Y; Liu L; Wu J; Zhao Y; Bai J; Ma L; Yue J; Jin J; Niu Z; Fang Y; Sun W Int J Mol Sci; 2019 Jun; 20(11):. PubMed ID: 31195741 [TBL] [Abstract][Full Text] [Related]
22. Combined BSA-Seq Based Mapping and RNA-Seq Profiling Reveal Candidate Genes Associated with Plant Architecture in Ye S; Yan L; Ma X; Chen Y; Wu L; Ma T; Zhao L; Yi B; Ma C; Tu J; Shen J; Fu T; Wen J Int J Mol Sci; 2022 Feb; 23(5):. PubMed ID: 35269615 [TBL] [Abstract][Full Text] [Related]
23. Transcript profiling reveals complex auxin signalling pathway and transcription regulation involved in dedifferentiation and redifferentiation during somatic embryogenesis in cotton. Yang X; Zhang X; Yuan D; Jin F; Zhang Y; Xu J BMC Plant Biol; 2012 Jul; 12():110. PubMed ID: 22817809 [TBL] [Abstract][Full Text] [Related]
24. Identification of Bna.IAA7.C05 as allelic gene for dwarf mutant generated from tissue culture in oilseed rape. Cheng H; Jin F; Zaman QU; Ding B; Hao M; Wang Y; Huang Y; Wells R; Dong Y; Hu Q BMC Plant Biol; 2019 Nov; 19(1):500. PubMed ID: 31729952 [TBL] [Abstract][Full Text] [Related]
25. Integrative RNA- and miRNA-Profile Analysis Reveals a Likely Role of BR and Auxin Signaling in Branch Angle Regulation of B. napus. Cheng H; Hao M; Wang W; Mei D; Wells R; Liu J; Wang H; Sang S; Tang M; Zhou R; Chu W; Fu L; Hu Q Int J Mol Sci; 2017 May; 18(5):. PubMed ID: 28481299 [TBL] [Abstract][Full Text] [Related]
26. RNA-Seq-based transcriptome analysis of dormant flower buds of Chinese cherry (Prunus pseudocerasus). Zhu Y; Li Y; Xin D; Chen W; Shao X; Wang Y; Guo W Gene; 2015 Jan; 555(2):362-76. PubMed ID: 25447903 [TBL] [Abstract][Full Text] [Related]
27. Transcriptome profiling analysis reveals the role of silique in controlling seed oil content in Brassica napus. Huang KL; Zhang ML; Ma GJ; Wu H; Wu XM; Ren F; Li XB PLoS One; 2017; 12(6):e0179027. PubMed ID: 28594951 [TBL] [Abstract][Full Text] [Related]
28. Genome-wide characterization of SDR gene family and its potential role in seed dormancy of Brassica napus L. Zhang F; Chen T; Liu N; Hou X; Wang L; Cai Q; Li R; Qian X; Xu H; Zhu Z; Zheng W; Yu Y; Zhou K BMC Plant Biol; 2024 Jan; 24(1):21. PubMed ID: 38166550 [TBL] [Abstract][Full Text] [Related]
29. Whole-transcriptome analysis reveals genetic factors underlying flowering time regulation in rapeseed (Brassica napus L.). Shah S; Weinholdt C; Jedrusik N; Molina C; Zou J; Große I; Schiessl S; Jung C; Emrani N Plant Cell Environ; 2018 Aug; 41(8):1935-1947. PubMed ID: 29813173 [TBL] [Abstract][Full Text] [Related]
30. Effect of germination potential on storage lipids and transcriptome changes in premature developing seeds of oilseed rape (Brassica napus L.). Zhu L; Zhao X; Xu Y; Wang Q; Wang H; Wu D; Jiang L Theor Appl Genet; 2020 Oct; 133(10):2839-2852. PubMed ID: 32617616 [TBL] [Abstract][Full Text] [Related]
31. Characterization of metabolite quantitative trait loci and metabolic networks that control glucosinolate concentration in the seeds and leaves of Brassica napus. Feng J; Long Y; Shi L; Shi J; Barker G; Meng J New Phytol; 2012 Jan; 193(1):96-108. PubMed ID: 21973035 [TBL] [Abstract][Full Text] [Related]
32. Comparative transcriptome profiling of two Brassica napus cultivars under chromium toxicity and its alleviation by reduced glutathione. Gill RA; Ali B; Cui P; Shen E; Farooq MA; Islam F; Ali S; Mao B; Zhou W BMC Genomics; 2016 Nov; 17(1):885. PubMed ID: 27821044 [TBL] [Abstract][Full Text] [Related]
33. Graphene oxide and ABA cotreatment regulates root growth of Brassica napus L. by regulating IAA/ABA. Xie LL; Chen F; Zou XL; Shen SS; Wang XG; Yao GX; Xu BB J Plant Physiol; 2019 Sep; 240():153007. PubMed ID: 31310905 [TBL] [Abstract][Full Text] [Related]
34. Integrated analysis of transcriptome and metabolome reveals insights for low-temperature germination in hybrid rapeseeds (Brassica napus L.). Song J; Chen Y; Jiang G; Zhao J; Wang W; Hong X J Plant Physiol; 2023 Dec; 291():154120. PubMed ID: 37935062 [TBL] [Abstract][Full Text] [Related]
35. Transcriptional profiling of canola developing embryo and identification of the important roles of BnDof5.6 in embryo development and fatty acids synthesis. Deng W; Yan F; Zhang X; Tang Y; Yuan Y Plant Cell Physiol; 2015 Aug; 56(8):1624-40. PubMed ID: 26092973 [TBL] [Abstract][Full Text] [Related]
36. Combined transcriptome and translatome analyses reveal a role for tryptophan-dependent auxin biosynthesis in the control of DOG1-dependent seed dormancy. Bai B; Novák O; Ljung K; Hanson J; Bentsink L New Phytol; 2018 Feb; 217(3):1077-1085. PubMed ID: 29139127 [TBL] [Abstract][Full Text] [Related]
37. Genome-wide analysis of cotton GH3 subfamily II reveals functional divergence in fiber development, hormone response and plant architecture. Yu D; Qanmber G; Lu L; Wang L; Li J; Yang Z; Liu Z; Li Y; Chen Q; Mendu V; Li F; Yang Z BMC Plant Biol; 2018 Dec; 18(1):350. PubMed ID: 30541440 [TBL] [Abstract][Full Text] [Related]
38. A Novel Arabidopsis microRNA promotes IAA biosynthesis via the indole-3-acetaldoxime pathway by suppressing superroot1. Kong W; Li Y; Zhang M; Jin F; Li J Plant Cell Physiol; 2015 Apr; 56(4):715-26. PubMed ID: 25552472 [TBL] [Abstract][Full Text] [Related]
39. A recessive high-density pod mutant resource of Brassica napus. Tang M; Tong C; Liang L; Du C; Zhao J; Xiao L; Tong J; Dai X; Helal M; Dai W; Xiang Y Plant Sci; 2020 Apr; 293():110411. PubMed ID: 32081260 [TBL] [Abstract][Full Text] [Related]
40. Temporal control of the Aux/IAA genes BnIAA32 and BnIAA34 mediates Brassica napus dual shade responses. Li Y; Guo Y; Cao Y; Xia P; Xu D; Sun N; Jiang L; Dong J J Integr Plant Biol; 2024 May; 66(5):928-942. PubMed ID: 37929685 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]