BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 31215490)

  • 1. Strategies of tenogenic differentiation of equine stem cells for tendon repair: current status and challenges.
    Shojaee A; Parham A
    Stem Cell Res Ther; 2019 Jun; 10(1):181. PubMed ID: 31215490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tenogenic differentiation of stem cells for tendon repair-what is the current evidence?
    Lui PP; Rui YF; Ni M; Chan KM
    J Tissue Eng Regen Med; 2011 Aug; 5(8):e144-63. PubMed ID: 21548133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tenogenic differentiation of mesenchymal stem cells and noncoding RNA: From bench to bedside.
    Lu YF; Chan KM; Li G; Zhang JF
    Exp Cell Res; 2016 Feb; 341(2):237-42. PubMed ID: 26724570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tendon tissue engineering: Current progress towards an optimized tenogenic differentiation protocol for human stem cells.
    Donderwinkel I; Tuan RS; Cameron NR; Frith JE
    Acta Biomater; 2022 Jun; 145():25-42. PubMed ID: 35470075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fetal derived embryonic-like stem cells improve healing in a large animal flexor tendonitis model.
    Watts AE; Yeager AE; Kopyov OV; Nixon AJ
    Stem Cell Res Ther; 2011 Jan; 2(1):4. PubMed ID: 21272343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Evaluation of Equine Allogeneic Tenogenic Primed Mesenchymal Stem Cells in a Surgically Induced Superficial Digital Flexor Tendon Lesion Model.
    Depuydt E; Broeckx SY; Van Hecke L; Chiers K; Van Brantegem L; van Schie H; Beerts C; Spaas JH; Pille F; Martens A
    Front Vet Sci; 2021; 8():641441. PubMed ID: 33748217
    [No Abstract]   [Full Text] [Related]  

  • 7. The effect of intralesional injection of bone marrow derived mesenchymal stem cells and bone marrow supernatant on collagen fibril size in a surgical model of equine superficial digital flexor tendonitis.
    Caniglia CJ; Schramme MC; Smith RK
    Equine Vet J; 2012 Sep; 44(5):587-93. PubMed ID: 22150794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Equine embryonic stem-like cells and mesenchymal stromal cells have different survival rates and migration patterns following their injection into damaged superficial digital flexor tendon.
    Guest DJ; Smith MR; Allen WR
    Equine Vet J; 2010 Oct; 42(7):636-42. PubMed ID: 20840579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stepwise Differentiation of Mesenchymal Stem Cells Augments Tendon-Like Tissue Formation and Defect Repair In Vivo.
    Yin Z; Guo J; Wu TY; Chen X; Xu LL; Lin SE; Sun YX; Chan KM; Ouyang H; Li G
    Stem Cells Transl Med; 2016 Aug; 5(8):1106-16. PubMed ID: 27280798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A review of tendon injury: why is the equine superficial digital flexor tendon most at risk?
    Thorpe CT; Clegg PD; Birch HL
    Equine Vet J; 2010 Mar; 42(2):174-80. PubMed ID: 20156256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stem cells in veterinary medicine--attempts at regenerating equine tendon after injury.
    Richardson LE; Dudhia J; Clegg PD; Smith R
    Trends Biotechnol; 2007 Sep; 25(9):409-16. PubMed ID: 17692415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Equine tendon mechanical behaviour: Prospects for repair and regeneration applications.
    Shojaee A
    Vet Med Sci; 2023 Sep; 9(5):2053-2069. PubMed ID: 37471573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Informing Stem Cell-Based Tendon Tissue Engineering Approaches with Embryonic Tendon Development.
    Okech W; Kuo CK
    Adv Exp Med Biol; 2016; 920():63-77. PubMed ID: 27535249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of stem cell carriers for tendon tissue engineering in pre-clinical models.
    Abbah SA; Spanoudes K; O'Brien T; Pandit A; Zeugolis DI
    Stem Cell Res Ther; 2014; 5(2):38. PubMed ID: 25157898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Progress with stem cell therapies for tendon tissue regeneration.
    Migliorini F; Tingart M; Maffulli N
    Expert Opin Biol Ther; 2020 Nov; 20(11):1373-1379. PubMed ID: 32574078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-differentiation potential is necessary for optimal tenogenesis of tendon stem cells.
    Rajpar I; Barrett JG
    Stem Cell Res Ther; 2020 Apr; 11(1):152. PubMed ID: 32272975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cystic fibrosis transmembrane conductance regulator mediates tenogenic differentiation of tendon-derived stem cells and tendon repair: accelerating tendon injury healing by intervening in its downstream signaling.
    Liu Y; Xu J; Xu L; Wu T; Sun Y; Lee YW; Wang B; Chan HC; Jiang X; Zhang J; Li G
    FASEB J; 2017 Sep; 31(9):3800-3815. PubMed ID: 28495756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth Factor-Mediated Tenogenic Induction of Multipotent Mesenchymal Stromal Cells Is Altered by the Microenvironment of Tendon Matrix.
    Roth SP; Schubert S; Scheibe P; Groß C; Brehm W; Burk J
    Cell Transplant; 2018 Oct; 27(10):1434-1450. PubMed ID: 30251565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tenogenic differentiation of equine mesenchymal progenitor cells under indirect co-culture.
    Lovati AB; Corradetti B; Cremonesi F; Bizzaro D; Consiglio AL
    Int J Artif Organs; 2012 Nov; 35(11):996-1005. PubMed ID: 23065882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EGR1 induces tenogenic differentiation of tendon stem cells and promotes rabbit rotator cuff repair.
    Tao X; Liu J; Chen L; Zhou Y; Tang K
    Cell Physiol Biochem; 2015; 35(2):699-709. PubMed ID: 25592085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.