BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 31215581)

  • 1. The role of olefin geometry in the activity of hydrocarbon stapled peptides targeting eukaryotic translation initiation factor 4E (eIF4E).
    Song JM; Gallagher EE; Menon A; Mishra LD; Garner AL
    Org Biomol Chem; 2019 Jul; 17(26):6414-6419. PubMed ID: 31215581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Consideration of Binding Kinetics in the Design of Stapled Peptide Mimics of the Disordered Proteins Eukaryotic Translation Initiation Factor 4E-Binding Protein 1 and Eukaryotic Translation Initiation Factor 4G.
    Gallagher EE; Song JM; Menon A; Mishra LD; Chmiel AF; Garner AL
    J Med Chem; 2019 May; 62(10):4967-4978. PubMed ID: 31033289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of all-hydrocarbon stapled α-helical peptides by ring-closing olefin metathesis.
    Kim YW; Grossmann TN; Verdine GL
    Nat Protoc; 2011 Jun; 6(6):761-71. PubMed ID: 21637196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural insights reveal a recognition feature for tailoring hydrocarbon stapled-peptides against the eukaryotic translation initiation factor 4E protein.
    Lama D; Liberatore AM; Frosi Y; Nakhle J; Tsomaia N; Bashir T; Lane DP; Brown CJ; Verma CS; Auvin S
    Chem Sci; 2019 Feb; 10(8):2489-2500. PubMed ID: 30881679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A cell-penetrant lactam-stapled peptide for targeting eIF4E protein-protein interactions.
    Gallagher EE; Menon A; Chmiel AF; Deprey K; Kritzer JA; Garner AL
    Eur J Med Chem; 2020 Nov; 205():112655. PubMed ID: 32739551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. X-ray Crystallographic Structure of α-Helical Peptide Stabilized by Hydrocarbon Stapling at
    Makura Y; Ueda A; Kato T; Iyoshi A; Higuchi M; Doi M; Tanaka M
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34069753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Importance of Net Hydrophobicity in the Cellular Uptake of All-Hydrocarbon Stapled Peptides.
    Sakagami K; Masuda T; Kawano K; Futaki S
    Mol Pharm; 2018 Mar; 15(3):1332-1340. PubMed ID: 29420899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cyclobutane-bearing restricted anchoring residues enabled geometry-specific hydrocarbon peptide stapling.
    Chen B; Liu C; Cong W; Gao F; Zou Y; Su L; Liu L; Hillisch A; Lehmann L; Bierer D; Li X; Hu HG
    Chem Sci; 2023 Oct; 14(41):11499-11506. PubMed ID: 37886087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The dynamic mechanism of 4E-BP1 recognition and phosphorylation by mTORC1.
    Böhm R; Imseng S; Jakob RP; Hall MN; Maier T; Hiller S
    Mol Cell; 2021 Jun; 81(11):2403-2416.e5. PubMed ID: 33852892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Introduction of all-hydrocarbon i,i+3 staples into alpha-helices via ring-closing olefin metathesis.
    Kim YW; Kutchukian PS; Verdine GL
    Org Lett; 2010 Jul; 12(13):3046-9. PubMed ID: 20527740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A unique binding mode of the eukaryotic translation initiation factor 4E for guiding the design of novel peptide inhibitors.
    Di Marino D; D'Annessa I; Tancredi H; Bagni C; Gallicchio E
    Protein Sci; 2015 Sep; 24(9):1370-82. PubMed ID: 26013047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Local control of a disorder-order transition in 4E-BP1 underpins regulation of translation via eIF4E.
    Tait S; Dutta K; Cowburn D; Warwicker J; Doig AJ; McCarthy JE
    Proc Natl Acad Sci U S A; 2010 Oct; 107(41):17627-32. PubMed ID: 20880835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of N-terminal region of eIF4E and Ser65-phosphorylation of 4E-BP1 on interaction between eIF4E and 4E-BP1 fragment peptide.
    Tomoo K; Abiko F; Miyagawa H; Kitamura K; Ishida T
    J Biochem; 2006 Aug; 140(2):237-46. PubMed ID: 16825247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitosis-related phosphorylation of the eukaryotic translation suppressor 4E-BP1 and its interaction with eukaryotic translation initiation factor 4E (eIF4E).
    Sun R; Cheng E; Velásquez C; Chang Y; Moore PS
    J Biol Chem; 2019 Aug; 294(31):11840-11852. PubMed ID: 31201269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural scaffold for eIF4E binding selectivity of 4E-BP isoforms: crystal structure of eIF4E binding region of 4E-BP2 and its comparison with that of 4E-BP1.
    Fukuyo A; In Y; Ishida T; Tomoo K
    J Pept Sci; 2011 Sep; 17(9):650-7. PubMed ID: 21661078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and Synthesis of Helical
    Ueda A; Higuchi M; Sato K; Umeno T; Tanaka M
    Molecules; 2020 Oct; 25(20):. PubMed ID: 33066194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incorporation of Putative Helix-Breaking Amino Acids in the Design of Novel Stapled Peptides: Exploring Biophysical and Cellular Permeability Properties.
    Partridge AW; Kaan HYK; Juang YC; Sadruddin A; Lim S; Brown CJ; Ng S; Thean D; Ferrer F; Johannes C; Yuen TY; Kannan S; Aronica P; Tan YS; Pradhan MR; Verma CS; Hochman J; Chen S; Wan H; Ha S; Sherborne B; Lane DP; Sawyer TK
    Molecules; 2019 Jun; 24(12):. PubMed ID: 31226791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Caspase cleavage of initiation factor 4E-binding protein 1 yields a dominant inhibitor of cap-dependent translation and reveals a novel regulatory motif.
    Tee AR; Proud CG
    Mol Cell Biol; 2002 Mar; 22(6):1674-83. PubMed ID: 11865047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of hydrocarbon stapling on the properties of α-helical antimicrobial peptides isolated from the venom of hymenoptera.
    Chapuis H; Slaninová J; Bednárová L; Monincová L; Buděšínský M; Čeřovský V
    Amino Acids; 2012 Nov; 43(5):2047-58. PubMed ID: 22526241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of stabilized alpha-helical peptides.
    Bernal F; Katz SG
    Methods Mol Biol; 2014; 1176():107-14. PubMed ID: 25030922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.