These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 31215624)

  • 1. Surface Motion Changes of Tympanic Membrane Damaged by Blast Waves.
    Gan RZ; Jiang S
    J Biomech Eng; 2019 Sep; 141(9):. PubMed ID: 31215624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual-laser measurement and finite element modeling of human tympanic membrane motion under blast exposure.
    Jiang S; Smith K; Gan RZ
    Hear Res; 2019 Jul; 378():43-52. PubMed ID: 30630647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanical Changes of Tympanic Membrane to Blast Waves.
    Gan RZ
    Adv Exp Med Biol; 2018; 1097():321-334. PubMed ID: 30315553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic Properties of Human Tympanic Membrane After Exposure to Blast Waves.
    Engles WG; Wang X; Gan RZ
    Ann Biomed Eng; 2017 Oct; 45(10):2383-2394. PubMed ID: 28634733
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental and modeling study of human tympanic membrane motion in the presence of middle ear liquid.
    Zhang X; Guan X; Nakmali D; Palan V; Pineda M; Gan RZ
    J Assoc Res Otolaryngol; 2014 Dec; 15(6):867-81. PubMed ID: 25106467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical damage of tympanic membrane in relation to impulse pressure waveform - A study in chinchillas.
    Gan RZ; Nakmali D; Ji XD; Leckness K; Yokell Z
    Hear Res; 2016 Oct; 340():25-34. PubMed ID: 26807796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of blast overpressure on the mechanical properties of the human tympanic membrane.
    Liang J; Smith KD; Gan RZ; Lu H
    J Mech Behav Biomed Mater; 2019 Dec; 100():103368. PubMed ID: 31473437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D Finite Element Model of Human Ear with 3-Chamber Spiral Cochlea for Blast Wave Transmission from the Ear Canal to Cochlea.
    Bradshaw JJ; Brown MA; Jiang S; Gan RZ
    Ann Biomed Eng; 2023 May; 51(5):1106-1118. PubMed ID: 37036617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual-laser measurement of human stapes footplate motion under blast exposure.
    Jiang S; Dai C; Gan RZ
    Hear Res; 2021 Apr; 403():108177. PubMed ID: 33524791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D Finite Element Modeling of Blast Wave Transmission from the External Ear to Cochlea.
    Brown MA; Ji XD; Gan RZ
    Ann Biomed Eng; 2021 Feb; 49(2):757-768. PubMed ID: 32926269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time measurement of stapes motion and intracochlear pressure during blast exposure.
    Bien AG; Jiang S; Gan RZ
    Hear Res; 2023 Mar; 429():108702. PubMed ID: 36669259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical Measurement and Modeling of Human Eardrum Injury in Relation to Blast Wave Direction.
    Gan RZ; Leckness K; Nakmali D; Ji XD
    Mil Med; 2018 Mar; 183(suppl_1):245-251. PubMed ID: 29635561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Effect of Ear Canal Orientation on Tympanic Membrane Motion and the Sound Field Near the Tympanic Membrane.
    Cheng JT; Ravicz M; Guignard J; Furlong C; Rosowski JJ
    J Assoc Res Otolaryngol; 2015 Aug; 16(4):413-32. PubMed ID: 25910607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The impact of tympanic membrane perforations on middle ear transfer function.
    Bevis N; Sackmann B; Effertz T; Lauxmann M; Beutner D
    Eur Arch Otorhinolaryngol; 2022 Jul; 279(7):3399-3406. PubMed ID: 34570265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracochlear pressure measurements during acoustic shock wave exposure.
    Greene NT; Alhussaini MA; Easter JR; Argo TF; Walilko T; Tollin DJ
    Hear Res; 2018 Aug; 365():149-164. PubMed ID: 29843947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design, fabrication, and in vitro testing of novel three-dimensionally printed tympanic membrane grafts.
    Kozin ED; Black NL; Cheng JT; Cotler MJ; McKenna MJ; Lee DJ; Lewis JA; Rosowski JJ; Remenschneider AK
    Hear Res; 2016 Oct; 340():191-203. PubMed ID: 26994661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finite element modeling of sound transmission with perforations of tympanic membrane.
    Gan RZ; Cheng T; Dai C; Yang F; Wood MW
    J Acoust Soc Am; 2009 Jul; 126(1):243-53. PubMed ID: 19603881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequential multipoint motion of the tympanic membrane measured by laser Doppler vibrometry: preliminary results for normal tympanic membrane.
    Kunimoto Y; Hasegawa K; Arii S; Kataoka H; Yazama H; Kuya J; Kitano H
    Otol Neurotol; 2014 Apr; 35(4):719-24. PubMed ID: 24317215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of varying tympanic-membrane material properties on human middle-ear sound transmission in a three-dimensional finite-element model.
    O'Connor KN; Cai H; Puria S
    J Acoust Soc Am; 2017 Nov; 142(5):2836. PubMed ID: 29195482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-Dimensional Finite Element Modeling of Blast Wave Transmission From the External Ear to a Spiral Cochlea.
    Brown MA; Bradshaw JJ; Gan RZ
    J Biomech Eng; 2022 Jan; 144(1):. PubMed ID: 34318317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.