These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 31215944)

  • 1. Vapor/liquid polymerization of ultraporous transparent and capacitive polypyrrole nanonets.
    Santino LM; Diao Y; Yang H; Lu Y; Wang H; Hwang E; D'Arcy JM
    Nanoscale; 2019 Jul; 11(25):12358-12369. PubMed ID: 31215944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Condensing Vapor Phase Polymerization (CVPP) of Electrochemically Capacitive and Stable Polypyrrole Microtubes.
    Santino LM; Hwang E; Diao Y; Lu Y; Wang H; Jiang Q; Singamaneni S; D'Arcy JM
    ACS Appl Mater Interfaces; 2017 Nov; 9(47):41496-41504. PubMed ID: 29111644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrodeposition and capacitive behavior of films for electrodes of electrochemical supercapacitors.
    Shi C; Zhitomirsky I
    Nanoscale Res Lett; 2010 Jan; 5(3):518-23. PubMed ID: 20672082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybrid Electrodes by In-Situ Integration of Graphene and Carbon-Nanotubes in Polypyrrole for Supercapacitors.
    Aphale A; Maisuria K; Mahapatra MK; Santiago A; Singh P; Patra P
    Sci Rep; 2015 Sep; 5():14445. PubMed ID: 26395922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transparent capacitors with hybrid ZnO:Al and Ag nanowires as electrodes.
    Zhang G; Wu H; Wang X; Wang T; Liu C
    Nanotechnology; 2016 Mar; 27(10):105204. PubMed ID: 26866788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal Nanowire-Based Hybrid Electrodes Exhibiting High Charge/Discharge Rates and Long-Lived Electrocatalysis.
    Pandey RK; Kawabata Y; Teraji S; Norisuye T; Tran-Cong-Miyata Q; Soh S; Nakanishi H
    ACS Appl Mater Interfaces; 2017 Oct; 9(41):36350-36357. PubMed ID: 28944655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Percolating silicon nanowire networks with highly reproducible electrical properties.
    Serre P; Mongillo M; Periwal P; Baron T; Ternon C
    Nanotechnology; 2015 Jan; 26(1):015201. PubMed ID: 25483713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vapor-Phase Polymerized Poly(3,4-Ethylenedioxythiophene) on a Nickel Nanowire Array Film: Aqueous Symmetrical Pseudocapacitors with Superior Performance.
    Xie Q; Xu Y; Wang Z; Xu C; Zou P; Lin Z; Xu C; Yang C; Kang F; Wong CP
    PLoS One; 2016; 11(11):e0166529. PubMed ID: 27861534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controllable fabrication of porous free-standing polypyrrole films via a gas phase polymerization.
    Lei J; Li Z; Lu X; Wang W; Bian X; Zheng T; Xue Y; Wang C
    J Colloid Interface Sci; 2011 Dec; 364(2):555-60. PubMed ID: 21925673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical impedance study of the polymerization of pyrrole on high surface area carbon electrodes.
    Moghaddam RB; Pickup PG
    Phys Chem Chem Phys; 2010 May; 12(18):4733-41. PubMed ID: 20428553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polypyrrole shell@3D-Ni metal core structured electrodes for high-performance supercapacitors.
    Chen GF; Su YZ; Kuang PY; Liu ZQ; Chen DY; Wu X; Li N; Qiao SZ
    Chemistry; 2015 Mar; 21(12):4614-21. PubMed ID: 25572117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding the growth mechanism of titanium disilicide nanonets.
    Zhou S; Xie J; Wang D
    ACS Nano; 2011 May; 5(5):4205-10. PubMed ID: 21506560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Versatile Method for Producing 2D and 3D Conductive Biomaterial Composites Using Sequential Chemical and Electrochemical Polymerization.
    Severt SY; Ostrovsky-Snider NA; Leger JM; Murphy AR
    ACS Appl Mater Interfaces; 2015 Nov; 7(45):25281-8. PubMed ID: 26544990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dendritic Ni(Cu)-polypyrrole hybrid films for a pseudo-capacitor.
    Choi BN; Chun WW; Qian A; Lee SJ; Chung CH
    Nanoscale; 2015 Nov; 7(44):18561-9. PubMed ID: 26509406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fe3O4/carbon hybrid nanoparticle electrodes for high-capacity electrochemical capacitors.
    Lee JS; Shin DH; Jun J; Lee C; Jang J
    ChemSusChem; 2014 Jun; 7(6):1676-83. PubMed ID: 24706636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silicon nanonets for biological sensing applications with enhanced optical detection ability.
    Serre P; Stambouli V; Weidenhaupt M; Baron T; Ternon C
    Biosens Bioelectron; 2015 Jun; 68():336-342. PubMed ID: 25599846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Size-controllable fabrication of noble metal nanonets using a TiO2 template.
    Yang L; Cai Q; Yu Y
    Inorg Chem; 2006 Nov; 45(24):9616-8. PubMed ID: 17112249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Incorporation of manganese dioxide within ultraporous activated graphene for high-performance electrochemical capacitors.
    Zhao X; Zhang L; Murali S; Stoller MD; Zhang Q; Zhu Y; Ruoff RS
    ACS Nano; 2012 Jun; 6(6):5404-12. PubMed ID: 22554307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sandwich-like nitrogen-doped porous carbon/graphene nanoflakes with high-rate capacitive performance.
    Zhang Y; Tao B; Xing W; Zhang L; Xue Q; Yan Z
    Nanoscale; 2016 Apr; 8(15):7889-98. PubMed ID: 26660668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. APTS and rGO co-functionalized pyrenated fluorescent nanonets for representative vapor phase nitroaromatic explosive detection.
    Guo L; Zu B; Yang Z; Cao H; Zheng X; Dou X
    Nanoscale; 2014; 6(3):1467-73. PubMed ID: 24316887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.