These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 31216144)
1. Reflection of Fast Neutrons from Water. Berger MJ; Cooper JW J Res Natl Bur Stand A Phys Chem; 1959; 63A(2):101-144. PubMed ID: 31216144 [TBL] [Abstract][Full Text] [Related]
2. The albedo effect on neutron transmission probability. Khanouchi A; Sabir A; Boulkheir M; Ichaoui R; Ghassoun J; Jehouani A Appl Radiat Isot; 1997; 48(10-12):1667-71. PubMed ID: 9463883 [TBL] [Abstract][Full Text] [Related]
3. Shielding implications for secondary neutrons and photons produced within the patient during IMPT. DeMarco J; Kupelian P; Santhanam A; Low D Med Phys; 2013 Jul; 40(7):071701. PubMed ID: 23822405 [TBL] [Abstract][Full Text] [Related]
4. Computational approach to determine the relative biological effectiveness of fast neutrons using the Geant4-DNA toolkit and a DNA atomic model from the Protein Data Bank. Zabihi A; Incerti S; Francis Z; Forozani G; Semsarha F; Moslehi A; Rezaeian P; Bernal MA Phys Rev E; 2019 May; 99(5-1):052404. PubMed ID: 31212425 [TBL] [Abstract][Full Text] [Related]
5. Empirical description and Monte Carlo simulation of fast neutron pencil beams as basis of a treatment planning system. Bourhis-Martin E; Meissner P; Rassow J; Baumhoer W; Schmidt R; Sauerwein W Med Phys; 2002 Aug; 29(8):1670-7. PubMed ID: 12201412 [TBL] [Abstract][Full Text] [Related]
6. Neutron scattering in concrete and wood: Part II--Oblique incidence. Facure A; Silva AX; Rivera JC; Falcão RC Radiat Prot Dosimetry; 2008; 128(3):367-74. PubMed ID: 17673488 [TBL] [Abstract][Full Text] [Related]
7. Albedo Neutron Dosimetry in a Deep Geological Disposal Repository for High-Level Nuclear Waste. Pang B; Becker F Radiat Prot Dosimetry; 2017 Apr; 174(3):308-314. PubMed ID: 27342450 [TBL] [Abstract][Full Text] [Related]
8. Neutron stimulated emission computed tomography: a Monte Carlo simulation approach. Sharma AC; Harrawood BP; Bender JE; Tourassi GD; Kapadia AJ Phys Med Biol; 2007 Oct; 52(20):6117-31. PubMed ID: 17921575 [TBL] [Abstract][Full Text] [Related]
9. Development of a Monte Carlo track structure code for low-energy protons in water. Uehara S; Toburen LH; Nikjoo H Int J Radiat Biol; 2001 Feb; 77(2):139-54. PubMed ID: 11236921 [TBL] [Abstract][Full Text] [Related]
10. Fast neutron absorbed dose distributions in the energy range 0.5-80 meV--a Monte Carlo study. Söderberg J; Carlsson GA Phys Med Biol; 2000 Oct; 45(10):2987-3007. PubMed ID: 11049184 [TBL] [Abstract][Full Text] [Related]
11. Interaction between the biological effects of high- and low-LET radiation dose components in a mixed field exposure. Mason AJ; Giusti V; Green S; Munck af Rosenschöld P; Beynon TD; Hopewell JW Int J Radiat Biol; 2011 Dec; 87(12):1162-72. PubMed ID: 21923301 [TBL] [Abstract][Full Text] [Related]
12. Kerma coefficients for neutron scattering on 12C and 16O at 96 MeV. Mermod P; Blomgren J; Nilsson L; Pomp S; Ohrn A; Osterlund M; Prokofiev A; Tippawan U Radiat Prot Dosimetry; 2007; 126(1-4):113-8. PubMed ID: 17575301 [TBL] [Abstract][Full Text] [Related]
13. Benchmark test of transport calculations of gold and nickel activation with implications for neutron kerma at Hiroshima. Hoshi M; Hiraoka M; Hayakawa N; Sawada S; Munaka M; Kuramoto A; Oka T; Iwatani K; Shizuma K; Hasai H Health Phys; 1992 Nov; 63(5):532-41. PubMed ID: 1399639 [TBL] [Abstract][Full Text] [Related]
14. A calibration method for realistic neutron dosimetry in radiobiological experiments assisted by MCNP simulation. Shahmohammadi Beni M; Krstic D; Nikezic D; Yu KN J Radiat Res; 2016 Sep; 57(5):492-498. PubMed ID: 27380801 [TBL] [Abstract][Full Text] [Related]
15. New calculations of neutron kerma coefficients and dose equivalent. Liu Z; Chen J J Radiol Prot; 2008 Jun; 28(2):185-93. PubMed ID: 18495982 [TBL] [Abstract][Full Text] [Related]
16. Calculation of the yields for the primary species formed from the radiolysis of liquid water by fast neutrons at temperatures between 25-350°C. Butarbutar SL; Sanguanmith S; Meesungnoen J; Sunaryo GR; Jay-Gerin JP Radiat Res; 2014 Jun; 181(6):659-65. PubMed ID: 24828113 [TBL] [Abstract][Full Text] [Related]
17. Development of Monte Carlo based real-time treatment planning system with fast calculation algorithm for boron neutron capture therapy. Takada K; Kumada H; Liem PH; Sakurai H; Sakae T Phys Med; 2016 Dec; 32(12):1846-1851. PubMed ID: 27889131 [TBL] [Abstract][Full Text] [Related]
18. Energy-loss straggling algorithms for Monte Carlo electron transport. Chibani O Med Phys; 2002 Oct; 29(10):2374-83. PubMed ID: 12408312 [TBL] [Abstract][Full Text] [Related]
19. Monte Carlo study of electron spectra produced in semi-infinite and finite water phantoms irradiated by photons of energies up to 2 MeV. Pandey LN; Rustgi ML; Long SA Health Phys; 1987 Aug; 53(2):163-74. PubMed ID: 3610642 [TBL] [Abstract][Full Text] [Related]
20. Analysis of neutron and photon response of a TLD-ALBEDO personal dosemeter on an ISO slab phantom using TRIPOLI-4.3 Monte Carlo code. Lee YK Radiat Prot Dosimetry; 2005; 115(1-4):329-33. PubMed ID: 16381740 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]