These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 31216466)
1. Two-Step Activation Mechanism of the ClpB Disaggregase for Sequential Substrate Threading by the Main ATPase Motor. Deville C; Franke K; Mogk A; Bukau B; Saibil HR Cell Rep; 2019 Jun; 27(12):3433-3446.e4. PubMed ID: 31216466 [TBL] [Abstract][Full Text] [Related]
2. Structural basis for substrate gripping and translocation by the ClpB AAA+ disaggregase. Rizo AN; Lin J; Gates SN; Tse E; Bart SM; Castellano LM; DiMaio F; Shorter J; Southworth DR Nat Commun; 2019 Jun; 10(1):2393. PubMed ID: 31160557 [TBL] [Abstract][Full Text] [Related]
3. Basic mechanism of the autonomous ClpG disaggregase. Katikaridis P; Römling U; Mogk A J Biol Chem; 2021; 296():100460. PubMed ID: 33639171 [TBL] [Abstract][Full Text] [Related]
4. Roles of individual domains and conserved motifs of the AAA+ chaperone ClpB in oligomerization, ATP hydrolysis, and chaperone activity. Mogk A; Schlieker C; Strub C; Rist W; Weibezahn J; Bukau B J Biol Chem; 2003 May; 278(20):17615-24. PubMed ID: 12624113 [TBL] [Abstract][Full Text] [Related]
5. Domain stability in the AAA+ ATPase ClpB from Escherichia coli. Nagy M; Akoev V; Zolkiewski M Arch Biochem Biophys; 2006 Sep; 453(1):63-9. PubMed ID: 16615934 [TBL] [Abstract][Full Text] [Related]
6. M domains couple the ClpB threading motor with the DnaK chaperone activity. Haslberger T; Weibezahn J; Zahn R; Lee S; Tsai FT; Bukau B; Mogk A Mol Cell; 2007 Jan; 25(2):247-60. PubMed ID: 17244532 [TBL] [Abstract][Full Text] [Related]
7. Electrostatic interactions between middle domain motif-1 and the AAA1 module of the bacterial ClpB chaperone are essential for protein disaggregation. Sugita S; Watanabe K; Hashimoto K; Niwa T; Uemura E; Taguchi H; Watanabe YH J Biol Chem; 2018 Dec; 293(50):19228-19239. PubMed ID: 30327424 [TBL] [Abstract][Full Text] [Related]
8. New insights into structural and functional relationships between LonA proteases and ClpB chaperones. Rotanova TV; Andrianova AG; Kudzhaev AM; Li M; Botos I; Wlodawer A; Gustchina A FEBS Open Bio; 2019 Sep; 9(9):1536-1551. PubMed ID: 31237118 [TBL] [Abstract][Full Text] [Related]
9. Single turnover transient state kinetics reveals processive protein unfolding catalyzed by Banwait JK; Islam L; Lucius AL Elife; 2024 Oct; 13():. PubMed ID: 39374121 [No Abstract] [Full Text] [Related]
10. Coupling ATP utilization to protein remodeling by ClpB, a hexameric AAA+ protein. Hoskins JR; Doyle SM; Wickner S Proc Natl Acad Sci U S A; 2009 Dec; 106(52):22233-8. PubMed ID: 19940245 [TBL] [Abstract][Full Text] [Related]
11. Comprehensive structural characterization of the human AAA+ disaggregase CLPB in the apo- and substrate-bound states reveals a unique mode of action driven by oligomerization. Wu D; Liu Y; Dai Y; Wang G; Lu G; Chen Y; Li N; Lin J; Gao N PLoS Biol; 2023 Feb; 21(2):e3001987. PubMed ID: 36745679 [TBL] [Abstract][Full Text] [Related]
13. Visualizing the ATPase cycle in a protein disaggregating machine: structural basis for substrate binding by ClpB. Lee S; Choi JM; Tsai FT Mol Cell; 2007 Jan; 25(2):261-71. PubMed ID: 17244533 [TBL] [Abstract][Full Text] [Related]
14. Structural pathway of regulated substrate transfer and threading through an Hsp100 disaggregase. Deville C; Carroni M; Franke KB; Topf M; Bukau B; Mogk A; Saibil HR Sci Adv; 2017 Aug; 3(8):e1701726. PubMed ID: 28798962 [TBL] [Abstract][Full Text] [Related]
15. Walker-A threonine couples nucleotide occupancy with the chaperone activity of the AAA+ ATPase ClpB. Nagy M; Wu HC; Liu Z; Kedzierska-Mieszkowska S; Zolkiewski M Protein Sci; 2009 Feb; 18(2):287-93. PubMed ID: 19177562 [TBL] [Abstract][Full Text] [Related]
16. Head-to-tail interactions of the coiled-coil domains regulate ClpB activity and cooperation with Hsp70 in protein disaggregation. Carroni M; Kummer E; Oguchi Y; Wendler P; Clare DK; Sinning I; Kopp J; Mogk A; Bukau B; Saibil HR Elife; 2014 Apr; 3():e02481. PubMed ID: 24843029 [TBL] [Abstract][Full Text] [Related]
17. Analysis of the cooperative ATPase cycle of the AAA+ chaperone ClpB from Thermus thermophilus by using ordered heterohexamers with an alternating subunit arrangement. Yamasaki T; Oohata Y; Nakamura T; Watanabe YH J Biol Chem; 2015 Apr; 290(15):9789-800. PubMed ID: 25713084 [TBL] [Abstract][Full Text] [Related]
18. ClpB chaperone passively threads soluble denatured proteins through its central pore. Nakazaki Y; Watanabe YH Genes Cells; 2014 Dec; 19(12):891-900. PubMed ID: 25288401 [TBL] [Abstract][Full Text] [Related]
19. Structures of the ATP-fueled ClpXP proteolytic machine bound to protein substrate. Fei X; Bell TA; Jenni S; Stinson BM; Baker TA; Harrison SC; Sauer RT Elife; 2020 Feb; 9():. PubMed ID: 32108573 [TBL] [Abstract][Full Text] [Related]
20. DnaK chaperone-dependent disaggregation by caseinolytic peptidase B (ClpB) mutants reveals functional overlap in the N-terminal domain and nucleotide-binding domain-1 pore tyrosine. Doyle SM; Hoskins JR; Wickner S J Biol Chem; 2012 Aug; 287(34):28470-9. PubMed ID: 22745126 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]