These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 3121648)
1. Ketamine effects on local cerebral blood flow and metabolism in the rat. Cavazzuti M; Porro CA; Biral GP; Benassi C; Barbieri GC J Cereb Blood Flow Metab; 1987 Dec; 7(6):806-11. PubMed ID: 3121648 [TBL] [Abstract][Full Text] [Related]
2. Influence of gamma-hydroxybutyrate on the relationship between local cerebral glucose utilization and local cerebral blood flow in the rat brain. Kuschinsky W; Suda S; Sokoloff L J Cereb Blood Flow Metab; 1985 Mar; 5(1):58-64. PubMed ID: 3972924 [TBL] [Abstract][Full Text] [Related]
3. Simultaneous determination of local cerebral glucose utilization and blood flow by carbon-14 double-label autoradiography: method of procedure and validation studies in the rat. Ginsberg MD; Smith DW; Wachtel MS; Gonzalez-Carvajal M; Busto R J Cereb Blood Flow Metab; 1986 Jun; 6(3):273-85. PubMed ID: 3711156 [TBL] [Abstract][Full Text] [Related]
4. Uncoupling of cerebral blood flow and metabolism after cerebral contusion in the rat. Richards HK; Simac S; Piechnik S; Pickard JD J Cereb Blood Flow Metab; 2001 Jul; 21(7):779-81. PubMed ID: 11435789 [TBL] [Abstract][Full Text] [Related]
5. Effect of the calcium antagonist nimodipine on local cerebral blood flow and metabolic coupling. Mohamed AA; Mendelow AD; Teasdale GM; Harper AM; McCulloch J J Cereb Blood Flow Metab; 1985 Mar; 5(1):26-33. PubMed ID: 3972920 [TBL] [Abstract][Full Text] [Related]
6. Cerebral acidosis in focal ischemia: I. A method for the simultaneous measurement of local cerebral pH with cerebral glucose utilization or cerebral blood flow in the rat. Hakim AM; Arrieta M J Cereb Blood Flow Metab; 1986 Dec; 6(6):667-75. PubMed ID: 3793802 [TBL] [Abstract][Full Text] [Related]
7. [Effect of dexamethasone on tumorous brain edema--changes in regional cerebral blood flow and glucose utilization]. Arita N; Yamamoto LY; Feindel W No To Shinkei; 1983 Nov; 35(11):1073-81. PubMed ID: 6661334 [TBL] [Abstract][Full Text] [Related]
8. Effects of ketamine anesthesia on central nociceptive processing in the rat: a 2-deoxyglucose study. Porro CA; Cavazzuti M; Giuliani D; Vellani V; Lui F; Baraldi P Neuroscience; 2004; 125(2):485-94. PubMed ID: 15062990 [TBL] [Abstract][Full Text] [Related]
9. Effects of cerebroprotective agents on cerebral blood flow and on postischemic energy metabolism in the rat brain. Bielenberg GW; Beck T; Sauer D; Burniol M; Krieglstein J J Cereb Blood Flow Metab; 1987 Aug; 7(4):480-8. PubMed ID: 3611206 [TBL] [Abstract][Full Text] [Related]
10. Differential effects of competitive (CGS19755) and non-competitive (MK 801) NMDA receptor antagonists upon local cerebral blood flow and local cerebral glucose utilisation in the rat. Sharkey J; Ritchie IM; Butcher SP; Kelly JS Brain Res; 1994 Jul; 651(1-2):27-36. PubMed ID: 7922575 [TBL] [Abstract][Full Text] [Related]
11. Alterations in local cerebral glucose utilization induced by phencyclidine. Weissman AD; Dam M; London ED Brain Res; 1987 Dec; 435(1-2):29-40. PubMed ID: 3427457 [TBL] [Abstract][Full Text] [Related]
12. Local cerebral energy metabolism: its relationship to local functional activity and blood flow. Sokoloff L Bull Schweiz Akad Med Wiss; 1980 Apr; 36(1-3):71-91. PubMed ID: 7426808 [TBL] [Abstract][Full Text] [Related]
13. [Effect of S-(+)-ketamine on autoregulation of cerebral blood flow]. Engelhard K; Werner C; Lu H; Möllenberg O; Kochs E Anasthesiol Intensivmed Notfallmed Schmerzther; 1997 Dec; 32(12):721-5. PubMed ID: 9498088 [TBL] [Abstract][Full Text] [Related]
14. [Nicergoline, an ergot alkaloid, improves ischemic brain damage by ameliorating the decreased cerebral blood flow and metabolism in spontaneously hypertensive rats]. Ueda T; Ishikawa T; Kawata K; Setoyama K; Maekawa T; Sakabe T; Takeshita H No To Shinkei; 1992 Dec; 44(12):1095-101. PubMed ID: 1296729 [TBL] [Abstract][Full Text] [Related]
15. Influence of nitrous oxide on local cerebral blood flow in awake, minimally restrained rats. Dahlgren N; Ingvar M; Yokoyama H; Siesjö BK J Cereb Blood Flow Metab; 1981; 1(2):211-8. PubMed ID: 6799529 [TBL] [Abstract][Full Text] [Related]
16. [Glucose metabolism in trauma-induced brain edema, with special reference to local blood circulation and blood-brain barrier]. Shibata S; Pappius HM No Shinkei Geka; 1983 Aug; 11(8):837-43. PubMed ID: 6633809 [TBL] [Abstract][Full Text] [Related]
17. Osmotic opening of the blood-brain barrier and local cerebral glucose utilization. Pappius HM; Savaki HE; Fieschi C; Rapoport SI; Sokoloff L Ann Neurol; 1979 Mar; 5(3):211-9. PubMed ID: 443753 [TBL] [Abstract][Full Text] [Related]
18. The A1 receptor agonist R-Pia reduces the imbalance between cerebral glucose metabolism and blood flow during status epilepticus: could this mechanism be involved with neuroprotection? Silva IR; Nehlig A; Rosim FE; Vignoli T; Persike DS; Ferrandon A; Sinigaglia-Coimbra R; Fernandes MJ Neurobiol Dis; 2011 Jan; 41(1):169-76. PubMed ID: 20850530 [TBL] [Abstract][Full Text] [Related]
19. Local cerebral glucose utilization and blood flow during metabolic acidosis. Kuschinsky W; Suda S; Sokoloff L Am J Physiol; 1981 Nov; 241(5):H772-7. PubMed ID: 7304767 [TBL] [Abstract][Full Text] [Related]
20. Global increase in cerebral metabolism and blood flow produced by focal electrical stimulation of dorsal medullary reticular formation in rat. Iadecola C; Nakai M; Mraovitch S; Ruggiero DA; Tucker LW; Reis DJ Brain Res; 1983 Aug; 272(1):101-14. PubMed ID: 6616188 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]