BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 31216517)

  • 1. Source term calculation and validation for
    Konheiser J; Müller SE; Magin A; Naumann B; Ferrari A
    J Radiol Prot; 2019 Sep; 39(3):906-919. PubMed ID: 31216517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of the neutron dose field around a biomedical cyclotron: FLUKA simulation and experimental measurements.
    Infantino A; Cicoria G; Lucconi G; Pancaldi D; Vichi S; Zagni F; Mostacci D; Marengo M
    Phys Med; 2016 Dec; 32(12):1602-1608. PubMed ID: 27919623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Source terms, shielding calculations and soil activation for a medical cyclotron.
    Konheiser J; Naumann B; Ferrari A; Brachem C; Müller SE
    J Radiol Prot; 2016 Dec; 36(4):819-831. PubMed ID: 27725341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radiation Protection Studies for Medical Particle Accelerators using Fluka Monte Carlo Code.
    Infantino A; Cicoria G; Lucconi G; Pancaldi D; Vichi S; Zagni F; Mostacci D; Marengo M
    Radiat Prot Dosimetry; 2017 Apr; 173(1-3):185-191. PubMed ID: 27886990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental measurement and Monte Carlo assessment of Argon-41 production in a PET cyclotron facility.
    Infantino A; Valtieri L; Cicoria G; Pancaldi D; Mostacci D; Marengo M
    Phys Med; 2015 Dec; 31(8):991-996. PubMed ID: 26420444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radioactive by-products of a self-shielded cyclotron and the liquid target system for F-18 routine production.
    Kambali I; Suryanto H; Parwanto
    Australas Phys Eng Sci Med; 2016 Jun; 39(2):403-12. PubMed ID: 26867652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GEANT4 simulation of cyclotron radioisotope production in a solid target.
    Poignant F; Penfold S; Asp J; Takhar P; Jackson P
    Phys Med; 2016 May; 32(5):728-34. PubMed ID: 27155937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neutron spectra due (13)N production in a PET cyclotron.
    Benavente JA; Vega-Carrillo HR; Lacerda MA; Fonseca TC; Faria FP; da Silva TA
    Appl Radiat Isot; 2015 May; 99():20-4. PubMed ID: 25699664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterisation of the secondary neutron field generated by a compact PET cyclotron with MCNP6 and experimental measurements.
    Alloni D; Prata M
    Appl Radiat Isot; 2017 Oct; 128():204-209. PubMed ID: 28735113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of the neutron field in the vicinity of an unshielded PET cyclotron.
    Méndez R; Iñiguez MP; Martí-Climent JM; Peñuelas I; Vega-Carrillo HR; Barquero R
    Phys Med Biol; 2005 Nov; 50(21):5141-52. PubMed ID: 16237246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MONTE CARLO SIMULATION OF THE RADIATION SOURCE TERM FROM [18O]H2O CYCLOTRON TARGET BOMBARDMENT WITH PROTONS OF 16.5 MEV.
    Benavente-Castillo JA; da Silva TA; Fonseca TCF; Lacerda MAS
    Radiat Prot Dosimetry; 2023 Apr; 199(6):552-563. PubMed ID: 36916121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of neutron induced radioactivity in the concrete walls of a PET cyclotron vault room with MCNPX.
    Martínez-Serrano JJ; Díez de los Ríos A
    Med Phys; 2010 Nov; 37(11):6015-21. PubMed ID: 21158313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal shielding design for bunkers of compact cyclotrons used in the production of medical radionuclides.
    Facure A; França WF
    Med Phys; 2010 Dec; 37(12):6332-7. PubMed ID: 21302790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A dose point kernel database using GATE Monte Carlo simulation toolkit for nuclear medicine applications: comparison with other Monte Carlo codes.
    Papadimitroulas P; Loudos G; Nikiforidis GC; Kagadis GC
    Med Phys; 2012 Aug; 39(8):5238-47. PubMed ID: 22894448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calculation of electron and isotopes dose point kernels with FLUKA Monte Carlo code for dosimetry in nuclear medicine therapy.
    Botta F; Mairani A; Battistoni G; Cremonesi M; Di Dia A; Fassò A; Ferrari A; Ferrari M; Paganelli G; Pedroli G; Valente M
    Med Phys; 2011 Jul; 38(7):3944-54. PubMed ID: 21858991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of (89)Zr production using the Monte Carlo code FLUKA.
    Infantino A; Cicoria G; Pancaldi D; Ciarmatori A; Boschi S; Fanti S; Marengo M; Mostacci D
    Appl Radiat Isot; 2011 Aug; 69(8):1134-7. PubMed ID: 21146416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting induced activity in the Havar foils of the (18)F production targets of a PET cyclotron and derived radiological risk.
    Martinez-Serrano JJ; Diez de Los Rios A
    Health Phys; 2014 Aug; 107(2):103-10. PubMed ID: 24978281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of penh, fluka, and Geant4/topas for absorbed dose calculations in air cavities representing ionization chambers in high-energy photon and proton beams.
    Baumann KS; Horst F; Zink K; Gomà C
    Med Phys; 2019 Oct; 46(10):4639-4653. PubMed ID: 31350915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A theoretical study for the production of
    Tatari M; Dehghan Manshadi Z; Naik H
    Appl Radiat Isot; 2022 Oct; 188():110347. PubMed ID: 35792354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte Carlo neutron doses estimations inside a PET cyclotron vault room.
    Barquero R; Méndez R; Martí-Climent JM; Quincoces G
    Radiat Prot Dosimetry; 2007; 126(1-4):477-81. PubMed ID: 17504752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.