These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 31216518)

  • 1. Resonance assisted jump-in voltage reduction for electrostatically actuated nanobeam-based gateless NEM switches.
    Meija R; Livshits AI; Kosmaca J; Jasulaneca L; Andzane J; Biswas S; Holmes JD; Erts D
    Nanotechnology; 2019 Sep; 30(38):385203. PubMed ID: 31216518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Review: Electrostatically actuated nanobeam-based nanoelectromechanical switches - materials solutions and operational conditions.
    Jasulaneca L; Kosmaca J; Meija R; Andzane J; Erts D
    Beilstein J Nanotechnol; 2018; 9():271-300. PubMed ID: 29441272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication and Characterization of Double- and Single-Clamped CuO Nanowire Based Nanoelectromechanical Switches.
    Jasulaneca L; Livshits AI; Meija R; Kosmaca J; Sondors R; Ramma MM; Jevdokimovs D; Prikulis J; Erts D
    Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33419203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Platform for Fast Low-Voltage Nanoelectromechanical Switching.
    Han J; Nelson Z; Chua MR; Swager TM; Niroui F; Lang JH; Bulović V
    Nano Lett; 2021 Dec; 21(24):10244-10251. PubMed ID: 34874728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Notched Anchor Design for Low Voltage Operation of Nanoelectromechanical (NEM) Memory Switches.
    Kang MH; Jo HC; Choi WY
    J Nanosci Nanotechnol; 2020 Jul; 20(7):4198-4202. PubMed ID: 31968441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of Nanoelectromechanical Switching in the Operation of Nanostructured Bi2Se3 Interlayers between Conductive Electrodes.
    Kosmaca J; Andzane J; Baitimirova M; Lombardi F; Erts D
    ACS Appl Mater Interfaces; 2016 May; 8(19):12257-62. PubMed ID: 27111150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunneling Nanoelectromechanical Switches Based on Compressible Molecular Thin Films.
    Niroui F; Wang AI; Sletten EM; Song Y; Kong J; Yablonovitch E; Swager TM; Lang JH; Bulović V
    ACS Nano; 2015 Aug; 9(8):7886-94. PubMed ID: 26244821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low voltage nanoelectromechanical switches based on silicon carbide nanowires.
    Feng XL; Matheny MH; Zorman CA; Mehregany M; Roukes ML
    Nano Lett; 2010 Aug; 10(8):2891-6. PubMed ID: 20698601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-terminal nanoelectromechanical switch based on tungsten nitride--an amorphous metallic material.
    Mayet AM; Hussain AM; Hussain MM
    Nanotechnology; 2016 Jan; 27(3):035202. PubMed ID: 26636189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-Dimensional Finite Element Method Simulation of Perforated Graphene Nano-Electro-Mechanical (NEM) Switches.
    Zulkefli MA; Mohamed MA; Siow KS; Yeop Majlis B; Kulothungan J; Muruganathan M; Mizuta H
    Micromachines (Basel); 2017 Jul; 8(8):. PubMed ID: 30400428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D Finite Element Simulation of Graphene Nano-Electro-Mechanical Switches.
    Kulothungan J; Muruganathan M; Mizuta H
    Micromachines (Basel); 2016 Aug; 7(8):. PubMed ID: 30404315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A sub-1-volt nanoelectromechanical switching device.
    Lee JO; Song YH; Kim MW; Kang MH; Oh JS; Yang HH; Yoon JB
    Nat Nanotechnol; 2013 Jan; 8(1):36-40. PubMed ID: 23178336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrostatic actuation and electromechanical switching behavior of one-dimensional nanostructures.
    Subramanian A; Alt AR; Dong L; Kratochvil BE; Bolognesi CR; Nelson BJ
    ACS Nano; 2009 Oct; 3(10):2953-64. PubMed ID: 19739601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-terminal nanoelectromechanical bistable switches based on molybdenum-sulfur-iodine molecular wire bundles.
    Andzane J; Prikulis J; Dvorsek D; Mihailovic D; Erts D
    Nanotechnology; 2010 Mar; 21(12):125706. PubMed ID: 20203354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinear Behavior of Electrostatically Actuated Microbeams with Coupled Longitudinal⁻Transversal Vibration.
    Ma C; Cao L; Li L; Shao M; Jing D; Guo Z
    Micromachines (Basel); 2019 May; 10(5):. PubMed ID: 31083425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large arrays and properties of 3-terminal graphene nanoelectromechanical switches.
    Liu X; Suk JW; Boddeti NG; Cantley L; Wang L; Gray JM; Hall HJ; Bright VM; Rogers CT; Dunn ML; Ruoff RS; Bunch JS
    Adv Mater; 2014 Mar; 26(10):1571-6. PubMed ID: 24339026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoelectromechanical contact switches.
    Loh OY; Espinosa HD
    Nat Nanotechnol; 2012 Apr; 7(5):283-95. PubMed ID: 22543427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoelectromechanical relay without pull-in instability for high-temperature non-volatile memory.
    Rana S; Mouro J; Bleiker SJ; Reynolds JD; Chong HMH; Niklaus F; Pamunuwa D
    Nat Commun; 2020 Mar; 11(1):1181. PubMed ID: 32132542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. >1000-Fold Lifetime Extension of a Nickel Electromechanical Contact Device via Graphene.
    Seo MH; Ko JH; Lee JO; Ko SD; Mun JH; Cho BJ; Kim YH; Yoon JB
    ACS Appl Mater Interfaces; 2018 Mar; 10(10):9085-9093. PubMed ID: 29461033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A 0.2 V Micro-Electromechanical Switch Enabled by a Phase Transition.
    Dong K; Choe HS; Wang X; Liu H; Saha B; Ko C; Deng Y; Tom KB; Lou S; Wang L; Grigoropoulos CP; You Z; Yao J; Wu J
    Small; 2018 Apr; 14(14):e1703621. PubMed ID: 29479803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.