BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 31216610)

  • 1. A Laboratory-Scale Study of the Applicability of a Halophilic Sediment Bioelectrochemical System for
    Pham HT; Tran HT; Vu LT; Dang HT; Nguyen TTT; Dang THT; Nguyen MTT; Nguyen HQ; Kim BH
    J Microbiol Biotechnol; 2019 Jul; 29(7):1104-1116. PubMed ID: 31216610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Laboratory-Scale Study of the Applicability of a Halophilic Sediment Bioelectrochemical System for
    Pham HT; Vu PH; Nguyen TTT; Bui HVT; Tran HTT; Tran HM; Nguyen HQ; Kim BH
    J Microbiol Biotechnol; 2019 Oct; 29(10):1607-1623. PubMed ID: 31474095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High growth potential and nitrogen removal performance of marine anammox bacteria in shrimp-aquaculture sediment.
    Van Duc L; Song B; Ito H; Hama T; Otani M; Kawagoshi Y
    Chemosphere; 2018 Apr; 196():69-77. PubMed ID: 29291516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrogen and phosphorus cycling in shrimp ponds and the measures for sustainable management.
    Xia LZ; Yang LZ; Yan MC
    Environ Geochem Health; 2004; 26(2-3):245-51. PubMed ID: 15499780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of shrimp-aquaculture reclamation on sediment nitrate dissimilatory reduction processes in a coastal wetland of southeastern China.
    Gao D; Liu M; Hou L; Derrick YFL; Wang W; Li X; Zeng A; Zheng Y; Han P; Yang Y; Yin G
    Environ Pollut; 2019 Dec; 255(Pt 1):113219. PubMed ID: 31539849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of dissolved nutrients in the aquaculture shrimp ponds of the Min River estuary, China: Concentrations, fluxes and environmental loads.
    Yang P; Lai DYF; Jin B; Bastviken D; Tan L; Tong C
    Sci Total Environ; 2017 Dec; 603-604():256-267. PubMed ID: 28628817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for anaerobic ammonium oxidation process in freshwater sediments of aquaculture ponds.
    Shen LD; Wu HS; Gao ZQ; Ruan YJ; Xu XH; Li J; Ma SJ; Zheng PH
    Environ Sci Pollut Res Int; 2016 Jan; 23(2):1344-52. PubMed ID: 26362637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Different distribution patterns of microorganisms between aquaculture pond sediment and water.
    Dai L; Liu C; Peng L; Song C; Li X; Tao L; Li G
    J Microbiol; 2021 Apr; 59(4):376-388. PubMed ID: 33630250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitrogen Removal Performance and Microbial Community Structure of IMTA Ponds (Apostistius japonicus-Penaeus japonicus-Ulva).
    Chen D; Tian C; Yuan H; Zhai W; Chang Z
    Microb Ecol; 2024 Jun; 87(1):82. PubMed ID: 38831142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal efficiency and balance of nitrogen in a recirculating aquaculture system integrated with constructed wetlands.
    Zhong F; Liang W; Yu T; Cheng SP; He F; Wu ZB
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(7):789-94. PubMed ID: 21644158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of presence of cellulose in the freshwater sediment on the performance of sediment microbial fuel cell.
    Sajana TK; Ghangrekar MM; Mitra A
    Bioresour Technol; 2014 Mar; 155():84-90. PubMed ID: 24434698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Archaeal community compositions in tilapia pond systems and their influencing factors.
    Fan L; Barry K; Shi L; Song C; Meng S; Qiu L; Hu G; Zheng Y; Li F; Chen J; Xu P
    World J Microbiol Biotechnol; 2018 Feb; 34(3):43. PubMed ID: 29492679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New ecological dam for sediment and overlying water pollution treatment based on microbial fuel cell principle.
    Wang RY; Li HX; Peng XQ; Zhang GY; Zhang LY
    Environ Sci Pollut Res Int; 2019 Jun; 26(18):18615-18623. PubMed ID: 31055745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of sulfamethoxazole and sulfamethoxazole-degrading bacteria on water quality and microbial communities in milkfish ponds.
    Chang BV; Chang YT; Chao WL; Yeh SL; Kuo DL; Yang CW
    Environ Pollut; 2019 Sep; 252(Pt A):305-316. PubMed ID: 31158659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Geochemical partitioning and possible heavy metal(loid) bioaccumulation within aquaculture shrimp ponds.
    Dietrich M; Ayers J
    Sci Total Environ; 2021 Sep; 788():147777. PubMed ID: 34023607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the bioremediation potential of mud polychaete Marphysa sp. in aquaculture pond sediments.
    Mandario MAE; Alava VR; AƱasco NC
    Environ Sci Pollut Res Int; 2019 Oct; 26(29):29810-29821. PubMed ID: 31410832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Abundance and removal of antibiotic resistance genes (ARGs) in the rearing environments of intensive shrimp aquaculture in South China.
    Wang L; Su H; Hu X; Xu Y; Xu W; Huang X; Li Z; Cao Y; Wen G
    J Environ Sci Health B; 2019; 54(3):211-218. PubMed ID: 30755094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electricity generation through a photo sediment microbial fuel cell using algae at the cathode.
    Neethu B; Ghangrekar MM
    Water Sci Technol; 2017 Dec; 76(11-12):3269-3277. PubMed ID: 29236006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The response of sediment microbial communities to temporal and site-specific variations of pollution in interconnected aquaculture pond and ditch systems.
    Xu M; Xu RZ; Shen XX; Gao P; Xue ZX; Huang DC; Jin GQ; Li C; Cao JS
    Sci Total Environ; 2022 Feb; 806(Pt 1):150498. PubMed ID: 34563908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioelectrode-based approach for enhancing nitrate and nitrite removal and electricity generation from eutrophic lakes.
    Zhang Y; Angelidaki I
    Water Res; 2012 Dec; 46(19):6445-53. PubMed ID: 23034447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.