These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 31216651)

  • 1. Evolutionary Dynamics in the RNA Bacteriophage Qβ Depends on the Pattern of Change in Selective Pressures.
    Somovilla P; Manrubia S; Lázaro E
    Pathogens; 2019 Jun; 8(2):. PubMed ID: 31216651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Standing Genetic Diversity and Transmission Bottleneck Size Drive Adaptation in Bacteriophage Qβ.
    Somovilla P; Rodríguez-Moreno A; Arribas M; Manrubia S; Lázaro E
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptation to fluctuating temperatures in an RNA virus is driven by the most stringent selective pressure.
    Arribas M; Kubota K; Cabanillas L; Lázaro E
    PLoS One; 2014; 9(6):e100940. PubMed ID: 24963780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intra-Population Competition during Adaptation to Increased Temperature in an RNA Bacteriophage.
    Arribas M; Lázaro E
    Int J Mol Sci; 2021 Jun; 22(13):. PubMed ID: 34202838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of silent mutations to thermal adaptation of RNA bacteriophage Qβ.
    Kashiwagi A; Sugawara R; Sano Tsushima F; Kumagai T; Yomo T
    J Virol; 2014 Oct; 88(19):11459-68. PubMed ID: 25056887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The balance between fitness advantages and costs drives adaptation of bacteriophage Qβ to changes in host density at different temperatures.
    Laguna-Castro M; Rodríguez-Moreno A; Llorente E; Lázaro E
    Front Microbiol; 2023; 14():1197085. PubMed ID: 37303783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution at increased error rate leads to the coexistence of multiple adaptive pathways in an RNA virus.
    Cabanillas L; Arribas M; Lázaro E
    BMC Evol Biol; 2013 Jan; 13():11. PubMed ID: 23323937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Single-Stranded RNA Bacteriophage Qβ Adapts Rapidly to High Temperatures: An Evolution Experiment.
    Hossain MT; Yokono T; Kashiwagi A
    Viruses; 2020 Jun; 12(6):. PubMed ID: 32545482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of adaptive mutations, from thermal adaptation experiments, on the infection cycle of RNA bacteriophage Qβ.
    Kashiwagi A; Kadoya T; Kumasaka N; Kumagai T; Tsushima FS; Yomo T
    Arch Virol; 2018 Oct; 163(10):2655-2662. PubMed ID: 29869034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolutionary Adaptation of an RNA Bacteriophage to Repeated Freezing and Thawing Cycles.
    Laguna-Castro M; Rodríguez-Moreno A; Lázaro E
    Int J Mol Sci; 2024 Apr; 25(9):. PubMed ID: 38732084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differences in adaptive dynamics determine the success of virus variants that propagate together.
    Arribas M; Aguirre J; Manrubia S; Lázaro E
    Virus Evol; 2018 Jan; 4(1):vex043. PubMed ID: 29340211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of increased mutagenesis on adaptation to high temperature in bacteriophage Qβ.
    Arribas M; Cabanillas L; Kubota K; Lázaro E
    Virology; 2016 Oct; 497():163-170. PubMed ID: 27471955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionary adaptation of an RNA bacteriophage to the simultaneous increase in the within-host and extracellular temperatures.
    Lázaro E; Arribas M; Cabanillas L; Román I; Acosta E
    Sci Rep; 2018 May; 8(1):8080. PubMed ID: 29795535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of mutations conferring 5-azacytidine resistance in bacteriophage Qβ.
    Arribas M; Cabanillas L; Lázaro E
    Virology; 2011 Sep; 417(2):343-52. PubMed ID: 21757215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of molecular evolution in RNA virus populations depend on sudden versus gradual environmental change.
    Morley VJ; Turner PE
    Evolution; 2017 Apr; 71(4):872-883. PubMed ID: 28121018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive walks toward a moving optimum.
    Collins S; de Meaux J; Acquisti C
    Genetics; 2007 Jun; 176(2):1089-99. PubMed ID: 17435242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Population Size and Mutation Rate on the Evolution of RNA Sequences on an Adaptive Landscape Determined by RNA Folding.
    Vahdati AR; Sprouffske K; Wagner A
    Int J Biol Sci; 2017; 13(9):1138-1151. PubMed ID: 29104505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting the evolutionary dynamics of seasonal adaptation to novel climates in Arabidopsis thaliana.
    Fournier-Level A; Perry EO; Wang JA; Braun PT; Migneault A; Cooper MD; Metcalf CJ; Schmitt J
    Proc Natl Acad Sci U S A; 2016 May; 113(20):E2812-21. PubMed ID: 27140640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptation to different rates of environmental change in Chlamydomonas.
    Collins S; de Meaux J
    Evolution; 2009 Nov; 63(11):2952-65. PubMed ID: 19619223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Effect of Population Bottleneck Size and Selective Regime on Genetic Diversity and Evolvability in Bacteria.
    Wein T; Dagan T
    Genome Biol Evol; 2019 Nov; 11(11):3283-3290. PubMed ID: 31688900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.