BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

503 related articles for article (PubMed ID: 31216722)

  • 1. Purinergic Signaling and Cochlear Injury-Targeting the Immune System?
    Köles L; Szepesy J; Berekméri E; Zelles T
    Int J Mol Sci; 2019 Jun; 20(12):. PubMed ID: 31216722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purinergic signaling in the organ of Corti: Potential therapeutic targets of sensorineural hearing losses.
    Berekméri E; Szepesy J; Köles L; Zelles T
    Brain Res Bull; 2019 Sep; 151():109-118. PubMed ID: 30721767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Age-related changes in P2Y receptor signalling in mouse cochlear supporting cells.
    Hool SA; Jeng JY; Jagger DJ; Marcotti W; Ceriani F
    J Physiol; 2023 Oct; 601(19):4375-4395. PubMed ID: 37715703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blockade of interleukin-6 signaling suppressed cochlear inflammatory response and improved hearing impairment in noise-damaged mice cochlea.
    Wakabayashi K; Fujioka M; Kanzaki S; Okano HJ; Shibata S; Yamashita D; Masuda M; Mihara M; Ohsugi Y; Ogawa K; Okano H
    Neurosci Res; 2010 Apr; 66(4):345-52. PubMed ID: 20026135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purinergic Signalling in the Cochlea.
    Vlajkovic SM; Thorne PR
    Int J Mol Sci; 2022 Nov; 23(23):. PubMed ID: 36499200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preclinical and clinical otoprotective applications of cell-penetrating peptide D-JNKI-1 (AM-111).
    Eshraghi AA; Aranke M; Salvi R; Ding D; Coleman JKM; Ocak E; Mittal R; Meyer T
    Hear Res; 2018 Oct; 368():86-91. PubMed ID: 29573879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Noise Damage on the Purinergic Signal of Cochlear Spiral Ganglion Cells in Guinea Pigs.
    Shi M; Cao L; Ding D; Yu W; Lv P; Yu N
    Mol Biotechnol; 2024 Feb; 66(2):321-331. PubMed ID: 37145220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purinergic regulation of sound transduction and auditory neurotransmission.
    Housley GD; Jagger DJ; Greenwood D; Raybould NP; Salih SG; Järlebark LE; Vlajkovic SM; Kanjhan R; Nikolic P; Muñoz DJ; Thorne PR
    Audiol Neurootol; 2002; 7(1):55-61. PubMed ID: 11914528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adenosine A2B receptor: A pathogenic factor and a therapeutic target for sensorineural hearing loss.
    Manalo JM; Liu H; Ding D; Hicks J; Sun H; Salvi R; Kellems RE; Pereira FA; Xia Y
    FASEB J; 2020 Dec; 34(12):15771-15787. PubMed ID: 33131093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Up-regulation of adenosine receptors in the cochlea by cisplatin.
    Ford MS; Nie Z; Whitworth C; Rybak LP; Ramkumar V
    Hear Res; 1997 Sep; 111(1-2):143-52. PubMed ID: 9307320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential expression of P2Y receptors in the rat cochlea during development.
    Huang LC; Thorne PR; Vlajkovic SM; Housley GD
    Purinergic Signal; 2010 Jun; 6(2):231-48. PubMed ID: 20806015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Postnatal Development of the Subcellular Structures and Purinergic Signaling of Deiters' Cells along the Tonotopic Axis of the Cochlea.
    Berekméri E; Fekete Á; Köles L; Zelles T
    Cells; 2019 Oct; 8(10):. PubMed ID: 31627326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential distribution of adenosine receptors in rat cochlea.
    Vlajkovic SM; Abi S; Wang CJ; Housley GD; Thorne PR
    Cell Tissue Res; 2007 Jun; 328(3):461-71. PubMed ID: 17285327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward Cochlear Therapies.
    Wang J; Puel JL
    Physiol Rev; 2018 Oct; 98(4):2477-2522. PubMed ID: 30156495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of cochlear blood flow by extracellular purines.
    Muñoz DJ; McFie C; Thorne PR
    Hear Res; 1999 Jan; 127(1-2):55-61. PubMed ID: 9925016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A corticotropin-releasing factor system expressed in the cochlea modulates hearing sensitivity and protects against noise-induced hearing loss.
    Graham CE; Basappa J; Vetter DE
    Neurobiol Dis; 2010 May; 38(2):246-58. PubMed ID: 20109547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Otoacoustic emissions and the categorization of cochlear and retro-cochlear lesions.
    Patuzzi R
    Br J Audiol; 1993 Apr; 27(2):91-5. PubMed ID: 8220287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purinergic Signaling and Aminoglycoside Ototoxicity: The Opposing Roles of P1 (Adenosine) and P2 (ATP) Receptors on Cochlear Hair Cell Survival.
    Lin SCY; Thorne PR; Housley GD; Vlajkovic SM
    Front Cell Neurosci; 2019; 13():207. PubMed ID: 31156393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of lifetime noise exposure on the middle-age human auditory brainstem response, tinnitus and speech-in-noise intelligibility.
    Valderrama JT; Beach EF; Yeend I; Sharma M; Van Dun B; Dillon H
    Hear Res; 2018 Aug; 365():36-48. PubMed ID: 29913342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ATP-dependent intercellular Ca2+ signaling in the developing cochlea: facts, fantasies and perspectives.
    Mammano F
    Semin Cell Dev Biol; 2013 Jan; 24(1):31-9. PubMed ID: 23022499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.