These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 31216991)
1. MetaNN: accurate classification of host phenotypes from metagenomic data using neural networks. Lo C; Marculescu R BMC Bioinformatics; 2019 Jun; 20(Suppl 12):314. PubMed ID: 31216991 [TBL] [Abstract][Full Text] [Related]
2. Automatic disease prediction from human gut metagenomic data using boosting GraphSAGE. Syama K; Jothi JAA; Khanna N BMC Bioinformatics; 2023 Mar; 24(1):126. PubMed ID: 37003965 [TBL] [Abstract][Full Text] [Related]
3. Multi-Layer and Recursive Neural Networks for Metagenomic Classification. Ditzler G; Polikar R; Rosen G IEEE Trans Nanobioscience; 2015 Sep; 14(6):608-16. PubMed ID: 26316190 [TBL] [Abstract][Full Text] [Related]
4. Phy-PMRFI: Phylogeny-Aware Prediction of Metagenomic Functions Using Random Forest Feature Importance. Wassan JT; Wang H; Browne F; Zheng H IEEE Trans Nanobioscience; 2019 Jul; 18(3):273-282. PubMed ID: 31021803 [TBL] [Abstract][Full Text] [Related]
5. Human host status inference from temporal microbiome changes via recurrent neural networks. Chen X; Liu L; Zhang W; Yang J; Wong KC Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34151933 [TBL] [Abstract][Full Text] [Related]
6. Machine Learning for detection of viral sequences in human metagenomic datasets. Bzhalava Z; Tampuu A; Bała P; Vicente R; Dillner J BMC Bioinformatics; 2018 Sep; 19(1):336. PubMed ID: 30249176 [TBL] [Abstract][Full Text] [Related]
7. PopPhy-CNN: A Phylogenetic Tree Embedded Architecture for Convolutional Neural Networks to Predict Host Phenotype From Metagenomic Data. Reiman D; Metwally AA; Sun J; Dai Y IEEE J Biomed Health Inform; 2020 Oct; 24(10):2993-3001. PubMed ID: 32396115 [TBL] [Abstract][Full Text] [Related]
8. Gene-based microbiome representation enhances host phenotype classification. Deschênes T; Tohoundjona FWE; Plante PL; Di Marzo V; Raymond F mSystems; 2023 Aug; 8(4):e0053123. PubMed ID: 37404032 [TBL] [Abstract][Full Text] [Related]
10. Deep learning models for bacteria taxonomic classification of metagenomic data. Fiannaca A; La Paglia L; La Rosa M; Lo Bosco G; Renda G; Rizzo R; Gaglio S; Urso A BMC Bioinformatics; 2018 Jul; 19(Suppl 7):198. PubMed ID: 30066629 [TBL] [Abstract][Full Text] [Related]
11. Identification of city specific important bacterial signature for the MetaSUB CAMDA challenge microbiome data. Walker AR; Datta S Biol Direct; 2019 Jul; 14(1):11. PubMed ID: 31340852 [TBL] [Abstract][Full Text] [Related]
12. Massive metagenomic data analysis using abundance-based machine learning. Harris ZN; Dhungel E; Mosior M; Ahn TH Biol Direct; 2019 Aug; 14(1):12. PubMed ID: 31370905 [TBL] [Abstract][Full Text] [Related]
13. A systematic machine learning and data type comparison yields metagenomic predictors of infant age, sex, breastfeeding, antibiotic usage, country of origin, and delivery type. Le Goallec A; Tierney BT; Luber JM; Cofer EM; Kostic AD; Patel CJ PLoS Comput Biol; 2020 May; 16(5):e1007895. PubMed ID: 32392251 [TBL] [Abstract][Full Text] [Related]
14. Gene Prediction in Metagenomic Fragments with Deep Learning. Zhang SW; Jin XY; Zhang T Biomed Res Int; 2017; 2017():4740354. PubMed ID: 29250541 [TBL] [Abstract][Full Text] [Related]
15. MegaD: Deep Learning for Rapid and Accurate Disease Status Prediction of Metagenomic Samples. Mreyoud Y; Song M; Lim J; Ahn TH Life (Basel); 2022 Apr; 12(5):. PubMed ID: 35629336 [TBL] [Abstract][Full Text] [Related]
16. Microbiome meta-analysis and cross-disease comparison enabled by the SIAMCAT machine learning toolbox. Wirbel J; Zych K; Essex M; Karcher N; Kartal E; Salazar G; Bork P; Sunagawa S; Zeller G Genome Biol; 2021 Mar; 22(1):93. PubMed ID: 33785070 [TBL] [Abstract][Full Text] [Related]
18. MUSiCC: a marker genes based framework for metagenomic normalization and accurate profiling of gene abundances in the microbiome. Manor O; Borenstein E Genome Biol; 2015 Mar; 16(1):53. PubMed ID: 25885687 [TBL] [Abstract][Full Text] [Related]
19. Understanding the microbiome: Emerging biomarkers for exploiting the microbiota for personalized medicine against cancer. Rajpoot M; Sharma AK; Sharma A; Gupta GK Semin Cancer Biol; 2018 Oct; 52(Pt 1):1-8. PubMed ID: 29425888 [TBL] [Abstract][Full Text] [Related]
20. Using convolutional neural networks to explore the microbiome. Reiman D; Metwally A; Yang Dai Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():4269-4272. PubMed ID: 29060840 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]