These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 31217121)

  • 1. The KIMORE Dataset: KInematic Assessment of MOvement and Clinical Scores for Remote Monitoring of Physical REhabilitation.
    Capecci M; Ceravolo MG; Ferracuti F; Iarlori S; Monteriu A; Romeo L; Verdini F
    IEEE Trans Neural Syst Rehabil Eng; 2019 Jul; 27(7):1436-1448. PubMed ID: 31217121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An instrumental approach for monitoring physical exercises in a visual markerless scenario: A proof of concept.
    Capecci M; Ceravolo MG; Ferracuti F; Grugnetti M; Iarlori S; Longhi S; Romeo L; Verdini F
    J Biomech; 2018 Mar; 69():70-80. PubMed ID: 29398000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graph Convolutional Networks for Assessment of Physical Rehabilitation Exercises.
    Deb S; Islam MF; Rahman S; Rahman S
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():410-419. PubMed ID: 35139022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Hidden Semi-Markov Model based approach for rehabilitation exercise assessment.
    Capecci M; Ceravolo MG; Ferracuti F; Iarlori S; Kyrki V; Monteriù A; Romeo L; Verdini F
    J Biomed Inform; 2018 Feb; 78():1-11. PubMed ID: 29277330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accuracy evaluation of the Kinect v2 sensor during dynamic movements in a rehabilitation scenario.
    Capecci M; Ceravolo MG; Ferracuti F; Iarlori S; Longhi S; Romeo L; Russi SN; Verdini F
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5409-5412. PubMed ID: 28269481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Deep Learning Framework for Assessing Physical Rehabilitation Exercises.
    Liao Y; Vakanski A; Xian M
    IEEE Trans Neural Syst Rehabil Eng; 2020 Feb; 28(2):468-477. PubMed ID: 31940544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pilot trial of distributed constraint-induced therapy with trunk restraint to improve poststroke reach to grasp and trunk kinematics.
    Wu CY; Chen YA; Chen HC; Lin KC; Yeh IL
    Neurorehabil Neural Repair; 2012; 26(3):247-55. PubMed ID: 21903975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single leg squat ratings by clinicians are reliable and predict excessive hip internal rotation moment.
    Barker-Davies RM; Roberts A; Bennett AN; Fong DTP; Wheeler P; Lewis MP
    Gait Posture; 2018 Mar; 61():453-458. PubMed ID: 29486363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recognizing upper limb movements with wrist worn inertial sensors using k-means clustering classification.
    Biswas D; Cranny A; Gupta N; Maharatna K; Achner J; Klemke J; Jöbges M; Ortmann S
    Hum Mov Sci; 2015 Apr; 40():59-76. PubMed ID: 25528632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using kinematic analysis to evaluate constraint-induced movement therapy in chronic stroke patients.
    Caimmi M; Carda S; Giovanzana C; Maini ES; Sabatini AM; Smania N; Molteni F
    Neurorehabil Neural Repair; 2008; 22(1):31-9. PubMed ID: 17595381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and preliminary evaluation of a novel low cost VR-based upper limb stroke rehabilitation platform using Wii technology.
    Tsekleves E; Paraskevopoulos IT; Warland A; Kilbride C
    Disabil Rehabil Assist Technol; 2016; 11(5):413-22. PubMed ID: 25391221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinematic analysis of head, trunk, and pelvis movement when people early after stroke reach sideways.
    Verheyden G; van Duijnhoven HJ; Burnett M; Littlewood J; Kunkel D; Ashburn AM;
    Neurorehabil Neural Repair; 2011 Sep; 25(7):656-63. PubMed ID: 21451115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of movement speed on kinematic variability and dynamic stability of the trunk in healthy individuals and low back pain patients.
    Asgari M; Sanjari MA; Mokhtarinia HR; Moeini Sedeh S; Khalaf K; Parnianpour M
    Clin Biomech (Bristol, Avon); 2015 Aug; 30(7):682-8. PubMed ID: 26021879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic biomechanical model for assessing and monitoring robot-assisted upper-limb therapy.
    Abdullah HA; Tarry C; Datta R; Mittal GS; Abderrahim M
    J Rehabil Res Dev; 2007; 44(1):43-62. PubMed ID: 17551857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep Learning for Sensor-Based Rehabilitation Exercise Recognition and Evaluation.
    Zhu ZA; Lu YC; You CH; Chiang CK
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30791648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assisted movement with enhanced sensation (AMES): coupling motor and sensory to remediate motor deficits in chronic stroke patients.
    Cordo P; Lutsep H; Cordo L; Wright WG; Cacciatore T; Skoss R
    Neurorehabil Neural Repair; 2009 Jan; 23(1):67-77. PubMed ID: 18645190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new way of assessing arm function in activity using kinematic Exposure Variation Analysis and portable inertial sensors--A validity study.
    Ertzgaard P; Öhberg F; Gerdle B; Grip H
    Man Ther; 2016 Feb; 21():241-9. PubMed ID: 26456185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physically Consistent Whole-Body Kinematics Assessment Based on an RGB-D Sensor. Application to Simple Rehabilitation Exercises.
    Colombel J; Bonnet V; Daney D; Dumas R; Seilles A; Charpillet F
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32429505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Component-Level Tuning of Kinematic Features From Composite Therapist Impressions of Movement Quality.
    Venkataraman V; Turaga P; Baran M; Lehrer N; Du T; Cheng L; Rikakis T; Wolf SL
    IEEE J Biomed Health Inform; 2016 Jan; 20(1):143-52. PubMed ID: 25438331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A review of computational approaches for evaluation of rehabilitation exercises.
    Liao Y; Vakanski A; Xian M; Paul D; Baker R
    Comput Biol Med; 2020 Apr; 119():103687. PubMed ID: 32339122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.