BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

467 related articles for article (PubMed ID: 31217133)

  • 1. Bi-Modality Medical Image Synthesis Using Semi-Supervised Sequential Generative Adversarial Networks.
    Yang X; Lin Y; Wang Z; Li X; Cheng KT
    IEEE J Biomed Health Inform; 2020 Mar; 24(3):855-865. PubMed ID: 31217133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Semi-supervised mp-MRI data synthesis with StitchLayer and auxiliary distance maximization.
    Wang Z; Lin Y; Cheng KT; Yang X
    Med Image Anal; 2020 Jan; 59():101565. PubMed ID: 31630010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Semi-supervised segmentation of lesion from breast ultrasound images with attentional generative adversarial network.
    Han L; Huang Y; Dou H; Wang S; Ahamad S; Luo H; Liu Q; Fan J; Zhang J
    Comput Methods Programs Biomed; 2020 Jun; 189():105275. PubMed ID: 31978805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. f-AnoGAN: Fast unsupervised anomaly detection with generative adversarial networks.
    Schlegl T; Seeböck P; Waldstein SM; Langs G; Schmidt-Erfurth U
    Med Image Anal; 2019 May; 54():30-44. PubMed ID: 30831356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ea-GANs: Edge-Aware Generative Adversarial Networks for Cross-Modality MR Image Synthesis.
    Yu B; Zhou L; Wang L; Shi Y; Fripp J; Bourgeat P
    IEEE Trans Med Imaging; 2019 Jul; 38(7):1750-1762. PubMed ID: 30714911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LMISA: A lightweight multi-modality image segmentation network via domain adaptation using gradient magnitude and shape constraint.
    Jafari M; Francis S; Garibaldi JM; Chen X
    Med Image Anal; 2022 Oct; 81():102536. PubMed ID: 35870297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generative Adversarial Network for Medical Images (MI-GAN).
    Iqbal T; Ali H
    J Med Syst; 2018 Oct; 42(11):231. PubMed ID: 30315368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multimodal MRI synthesis using unified generative adversarial networks.
    Dai X; Lei Y; Fu Y; Curran WJ; Liu T; Mao H; Yang X
    Med Phys; 2020 Dec; 47(12):6343-6354. PubMed ID: 33053202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Paired-unpaired Unsupervised Attention Guided GAN with transfer learning for bidirectional brain MR-CT synthesis.
    Abu-Srhan A; Almallahi I; Abushariah MAM; Mahafza W; Al-Kadi OS
    Comput Biol Med; 2021 Sep; 136():104763. PubMed ID: 34449305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Semi-Supervised Learning for Low-Dose CT Image Restoration with Hierarchical Deep Generative Adversarial Network (HD-GAN).
    Choi K; Vania M; Kim S
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2683-2686. PubMed ID: 31946448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SymReg-GAN: Symmetric Image Registration With Generative Adversarial Networks.
    Zheng Y; Sui X; Jiang Y; Che T; Zhang S; Yang J; Li H
    IEEE Trans Pattern Anal Mach Intell; 2022 Sep; 44(9):5631-5646. PubMed ID: 34033536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lumbar Spine Computed Tomography to Magnetic Resonance Imaging Synthesis Using Generative Adversarial Network: Visual Turing Test.
    Hong KT; Cho Y; Kang CH; Ahn KS; Lee H; Kim J; Hong SJ; Kim BH; Shim E
    Diagnostics (Basel); 2022 Feb; 12(2):. PubMed ID: 35204619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploiting generative self-supervised learning for the assessment of biological images with lack of annotations.
    Mascolini A; Cardamone D; Ponzio F; Di Cataldo S; Ficarra E
    BMC Bioinformatics; 2022 Jul; 23(1):295. PubMed ID: 35871688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Semi-supervised GAN-based Radiomics Model for Data Augmentation in Breast Ultrasound Mass Classification.
    Pang T; Wong JHD; Ng WL; Chan CS
    Comput Methods Programs Biomed; 2021 May; 203():106018. PubMed ID: 33714900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing classification of cells procured from bone marrow aspirate smears using generative adversarial networks and sequential convolutional neural network.
    Hazra D; Byun YC; Kim WJ
    Comput Methods Programs Biomed; 2022 Sep; 224():107019. PubMed ID: 35878483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-fidelity direct contrast synthesis from magnetic resonance fingerprinting.
    Wang K; Doneva M; Meineke J; Amthor T; Karasan E; Tan F; Tamir JI; Yu SX; Lustig M
    Magn Reson Med; 2023 Nov; 90(5):2116-2129. PubMed ID: 37332200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of Supervised and Unsupervised Deep Learning Methods for Medical Image Synthesis between Computed Tomography and Magnetic Resonance Images.
    Li Y; Li W; Xiong J; Xia J; Xie Y
    Biomed Res Int; 2020; 2020():5193707. PubMed ID: 33204701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multimodal MR Synthesis via Modality-Invariant Latent Representation.
    Chartsias A; Joyce T; Giuffrida MV; Tsaftaris SA
    IEEE Trans Med Imaging; 2018 Mar; 37(3):803-814. PubMed ID: 29053447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep virtual adversarial self-training with consistency regularization for semi-supervised medical image classification.
    Wang X; Chen H; Xiang H; Lin H; Lin X; Heng PA
    Med Image Anal; 2021 May; 70():102010. PubMed ID: 33677262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retinal Image Synthesis and Semi-Supervised Learning for Glaucoma Assessment.
    Diaz-Pinto A; Colomer A; Naranjo V; Morales S; Xu Y; Frangi AF
    IEEE Trans Med Imaging; 2019 Sep; 38(9):2211-2218. PubMed ID: 30843823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.