These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 31217252)

  • 1. Nascent chromatin occupancy profiling reveals locus- and factor-specific chromatin maturation dynamics behind the DNA replication fork.
    Gutiérrez MP; MacAlpine HK; MacAlpine DM
    Genome Res; 2019 Jul; 29(7):1123-1133. PubMed ID: 31217252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatiotemporal kinetics of CAF-1-dependent chromatin maturation ensures transcription fidelity during S-phase.
    Chen B; MacAlpine HK; Hartemink AJ; MacAlpine DM
    Genome Res; 2023 Dec; 33(12):2108-2118. PubMed ID: 38081658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell-Cycle-Dependent Chromatin Dynamics at Replication Origins.
    Li Y; Hartemink AJ; MacAlpine DM
    Genes (Basel); 2021 Dec; 12(12):. PubMed ID: 34946946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diversity of eukaryotic DNA replication origins revealed by genome-wide analysis of chromatin structure.
    Berbenetz NM; Nislow C; Brown GW
    PLoS Genet; 2010 Sep; 6(9):e1001092. PubMed ID: 20824081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Eukaryotic DNA replication in a chromatin context.
    Tabancay AP; Forsburg SL
    Curr Top Dev Biol; 2006; 76():129-84. PubMed ID: 17118266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromatin Controls DNA Replication Origin Selection, Lagging-Strand Synthesis, and Replication Fork Rates.
    Kurat CF; Yeeles JTP; Patel H; Early A; Diffley JFX
    Mol Cell; 2017 Jan; 65(1):117-130. PubMed ID: 27989438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromatin assembly during S phase: contributions from histone deposition, DNA replication and the cell division cycle.
    Krude T; Keller C
    Cell Mol Life Sci; 2001 May; 58(5-6):665-72. PubMed ID: 11437228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RPA binds histone H3-H4 and functions in DNA replication-coupled nucleosome assembly.
    Liu S; Xu Z; Leng H; Zheng P; Yang J; Chen K; Feng J; Li Q
    Science; 2017 Jan; 355(6323):415-420. PubMed ID: 28126821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Ddc1-Mec3-Rad17 sliding clamp regulates histone-histone chaperone interactions and DNA replication-coupled nucleosome assembly in budding yeast.
    Burgess RJ; Han J; Zhang Z
    J Biol Chem; 2014 Apr; 289(15):10518-10529. PubMed ID: 24573675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Establishment of a promoter-based chromatin architecture on recently replicated DNA can accommodate variable inter-nucleosome spacing.
    Fennessy RT; Owen-Hughes T
    Nucleic Acids Res; 2016 Sep; 44(15):7189-203. PubMed ID: 27106059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. H2B mono-ubiquitylation facilitates fork stalling and recovery during replication stress by coordinating Rad53 activation and chromatin assembly.
    Lin CY; Wu MY; Gay S; Marjavaara L; Lai MS; Hsiao WC; Hung SH; Tseng HY; Wright DE; Wang CY; Hsu GS; Devys D; Chabes A; Kao CF
    PLoS Genet; 2014 Oct; 10(10):e1004667. PubMed ID: 25275495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intrinsic coupling of lagging-strand synthesis to chromatin assembly.
    Smith DJ; Whitehouse I
    Nature; 2012 Mar; 483(7390):434-8. PubMed ID: 22419157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New histone supply regulates replication fork speed and PCNA unloading.
    Mejlvang J; Feng Y; Alabert C; Neelsen KJ; Jasencakova Z; Zhao X; Lees M; Sandelin A; Pasero P; Lopes M; Groth A
    J Cell Biol; 2014 Jan; 204(1):29-43. PubMed ID: 24379417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Histone acetyltransferase 1 is required for DNA replication fork function and stability.
    Agudelo Garcia PA; Lovejoy CM; Nagarajan P; Park D; Popova LV; Freitas MA; Parthun MR
    J Biol Chem; 2020 Jun; 295(25):8363-8373. PubMed ID: 32366460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Histone H3K56 acetylation, CAF1, and Rtt106 coordinate nucleosome assembly and stability of advancing replication forks.
    Clemente-Ruiz M; González-Prieto R; Prado F
    PLoS Genet; 2011 Nov; 7(11):e1002376. PubMed ID: 22102830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide mapping of yeast histone chaperone anti-silencing function 1 reveals its role in condensin binding with chromatin.
    Dewari PS; Bhargava P
    PLoS One; 2014; 9(9):e108652. PubMed ID: 25264624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptional Regulators Compete with Nucleosomes Post-replication.
    Ramachandran S; Henikoff S
    Cell; 2016 Apr; 165(3):580-92. PubMed ID: 27062929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ATP-dependent chromatin remodeling shapes the DNA replication landscape.
    Vincent JA; Kwong TJ; Tsukiyama T
    Nat Struct Mol Biol; 2008 May; 15(5):477-84. PubMed ID: 18408730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nucleosome occupancy as a novel chromatin parameter for replication origin functions.
    Rodriguez J; Lee L; Lynch B; Tsukiyama T
    Genome Res; 2017 Feb; 27(2):269-277. PubMed ID: 27895110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide chromatin footprinting reveals changes in replication origin architecture induced by pre-RC assembly.
    Belsky JA; MacAlpine HK; Lubelsky Y; Hartemink AJ; MacAlpine DM
    Genes Dev; 2015 Jan; 29(2):212-24. PubMed ID: 25593310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.