These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
317 related articles for article (PubMed ID: 31217437)
61. Lymph node-targeted immunotherapy mediates potent immunity resulting in regression of isolated or metastatic human papillomavirus-transformed tumors. Smith KA; Meisenburg BL; Tam VL; Pagarigan RR; Wong R; Joea DK; Lantzy L; Carrillo MA; Gross TM; Malyankar UM; Chiang CS; Da Silva DM; Kündig TM; Kast WM; Qiu Z; Bot A Clin Cancer Res; 2009 Oct; 15(19):6167-76. PubMed ID: 19789304 [TBL] [Abstract][Full Text] [Related]
62. Phosphatidylserine-targeting antibodies augment the anti-tumorigenic activity of anti-PD-1 therapy by enhancing immune activation and downregulating pro-oncogenic factors induced by T-cell checkpoint inhibition in murine triple-negative breast cancers. Gray MJ; Gong J; Hatch MM; Nguyen V; Hughes CC; Hutchins JT; Freimark BD Breast Cancer Res; 2016 May; 18(1):50. PubMed ID: 27169467 [TBL] [Abstract][Full Text] [Related]
63. The superior efficacy of anti-PD-1/PD-L1 immunotherapy in KRAS-mutant non-small cell lung cancer that correlates with an inflammatory phenotype and increased immunogenicity. Liu C; Zheng S; Jin R; Wang X; Wang F; Zang R; Xu H; Lu Z; Huang J; Lei Y; Mao S; Wang Y; Feng X; Sun N; Wang Y; He J Cancer Lett; 2020 Feb; 470():95-105. PubMed ID: 31644929 [TBL] [Abstract][Full Text] [Related]
64. Abscopal Effects With Hypofractionated Schedules Extending Into the Effector Phase of the Tumor-Specific T-Cell Response. Zhang X; Niedermann G Int J Radiat Oncol Biol Phys; 2018 May; 101(1):63-73. PubMed ID: 29534901 [TBL] [Abstract][Full Text] [Related]
65. GTL001 and bivalent CyaA-based therapeutic vaccine strategies against human papillomavirus and other tumor-associated antigens induce effector and memory T-cell responses that inhibit tumor growth. Esquerré M; Momot M; Goubier A; Gonindard C; Leung-Theung-Long S; Misseri Y; Bissery MC Vaccine; 2017 Mar; 35(11):1509-1516. PubMed ID: 28196735 [TBL] [Abstract][Full Text] [Related]
66. Cisplatin Augments Antitumor T-Cell Responses Leading to a Potent Therapeutic Effect in Combination With PD-L1 Blockade. Wakita D; Iwai T; Harada S; Suzuki M; Yamamoto K; Sugimoto M Anticancer Res; 2019 Apr; 39(4):1749-1760. PubMed ID: 30952714 [TBL] [Abstract][Full Text] [Related]
68. 'Final common pathway' of human cancer immunotherapy: targeting random somatic mutations. Tran E; Robbins PF; Rosenberg SA Nat Immunol; 2017 Feb; 18(3):255-262. PubMed ID: 28198830 [TBL] [Abstract][Full Text] [Related]
69. Engineering Dendritic-Cell-Based Vaccines and PD-1 Blockade in Self-Assembled Peptide Nanofibrous Hydrogel to Amplify Antitumor T-Cell Immunity. Yang P; Song H; Qin Y; Huang P; Zhang C; Kong D; Wang W Nano Lett; 2018 Jul; 18(7):4377-4385. PubMed ID: 29932335 [TBL] [Abstract][Full Text] [Related]
70. T-Cell-Inflamed Gene-Expression Profile, Programmed Death Ligand 1 Expression, and Tumor Mutational Burden Predict Efficacy in Patients Treated With Pembrolizumab Across 20 Cancers: KEYNOTE-028. Ott PA; Bang YJ; Piha-Paul SA; Razak ARA; Bennouna J; Soria JC; Rugo HS; Cohen RB; O'Neil BH; Mehnert JM; Lopez J; Doi T; van Brummelen EMJ; Cristescu R; Yang P; Emancipator K; Stein K; Ayers M; Joe AK; Lunceford JK J Clin Oncol; 2019 Feb; 37(4):318-327. PubMed ID: 30557521 [TBL] [Abstract][Full Text] [Related]
71. Personalized neoantigen vaccines: A new approach to cancer immunotherapy. Aldous AR; Dong JZ Bioorg Med Chem; 2018 Jun; 26(10):2842-2849. PubMed ID: 29111369 [TBL] [Abstract][Full Text] [Related]
72. Tumor Burden Dictates the Neoantigen Features Required to Generate an Effective Cancer Vaccine. Garzia I; Nocchi L; Avalle L; Troise F; Leoni G; Seclì L; Antonucci L; Cotugno G; Allocca S; Romano G; Conti L; Caiazza C; Mallardo M; Poli V; Scarselli E; D'Alise AM Cancer Immunol Res; 2024 Apr; 12(4):440-452. PubMed ID: 38331413 [TBL] [Abstract][Full Text] [Related]
73. A vaccine-based nanosystem for initiating innate immunity and improving tumor immunotherapy. Zheng DW; Gao F; Cheng Q; Bao P; Dong X; Fan JX; Song W; Zeng X; Cheng SX; Zhang XZ Nat Commun; 2020 Apr; 11(1):1985. PubMed ID: 32332752 [TBL] [Abstract][Full Text] [Related]
74. Gastrin vaccine improves response to immune checkpoint antibody in murine pancreatic cancer by altering the tumor microenvironment. Osborne N; Sundseth R; Burks J; Cao H; Liu X; Kroemer AH; Sutton L; Cato A; Smith JP Cancer Immunol Immunother; 2019 Oct; 68(10):1635-1648. PubMed ID: 31549214 [TBL] [Abstract][Full Text] [Related]
75. Dual antigen target-based immunotherapy for prostate cancer eliminates the growth of established tumors in mice. Karan D; Dubey S; Van Veldhuizen P; Holzbeierlein JM; Tawfik O; Thrasher JB Immunotherapy; 2011 Jun; 3(6):735-46. PubMed ID: 21668311 [TBL] [Abstract][Full Text] [Related]
76. Combined Radiation Therapy and Immune Checkpoint Blockade Therapy for Breast Cancer. Hu ZI; Ho AY; McArthur HL Int J Radiat Oncol Biol Phys; 2017 Sep; 99(1):153-164. PubMed ID: 28816141 [TBL] [Abstract][Full Text] [Related]
77. Sequential administration of MVA-based vaccines and PD-1/PD-L1-blocking antibodies confers measurable benefits on tumor growth and survival: Preclinical studies with MVA-βGal and MVA-MUC1 (TG4010) in a murine tumor model. Remy-Ziller C; Thioudellet C; Hortelano J; Gantzer M; Nourtier V; Claudepierre MC; Sansas B; Préville X; Bendjama K; Quemeneur E; Rittner K Hum Vaccin Immunother; 2018 Jan; 14(1):140-145. PubMed ID: 28925793 [TBL] [Abstract][Full Text] [Related]
78. Cancer Neoantigens and Applications for Immunotherapy. Desrichard A; Snyder A; Chan TA Clin Cancer Res; 2016 Feb; 22(4):807-12. PubMed ID: 26515495 [TBL] [Abstract][Full Text] [Related]
79. Combinatory therapy adopting nanoparticle-based cancer vaccination with immune checkpoint blockade for treatment of post-surgical tumor recurrences. Chung CK; Da Silva CG; Kralisch D; Chan A; Ossendorp F; Cruz LJ J Control Release; 2018 Sep; 285():56-66. PubMed ID: 30008371 [TBL] [Abstract][Full Text] [Related]