These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 31217516)

  • 1. Modified expression of ZmMYB167 in Brachypodium distachyon and Zea mays leads to increased cell wall lignin and phenolic content.
    Bhatia R; Dalton S; Roberts LA; Moron-Garcia OM; Iacono R; Kosik O; Gallagher JA; Bosch M
    Sci Rep; 2019 Jun; 9(1):8800. PubMed ID: 31217516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional characterization of cinnamyl alcohol dehydrogenase and caffeic acid O-methyltransferase in Brachypodium distachyon.
    Trabucco GM; Matos DA; Lee SJ; Saathoff AJ; Priest HD; Mockler TC; Sarath G; Hazen SP
    BMC Biotechnol; 2013 Jul; 13():61. PubMed ID: 23902793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional testing of a PF02458 homologue of putative rice arabinoxylan feruloyl transferase genes in Brachypodium distachyon.
    Buanafina MM; Fescemyer HW; Sharma M; Shearer EA
    Planta; 2016 Mar; 243(3):659-74. PubMed ID: 26612070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SECONDARY WALL ASSOCIATED MYB1 is a positive regulator of secondary cell wall thickening in Brachypodium distachyon and is not found in the Brassicaceae.
    Handakumbura PP; Brow K; Whitney IP; Zhao K; Sanguinet KA; Lee SJ; Olins J; Romero-Gamboa SP; Harrington MJ; Bascom CJ; MacKinnon KJ; Veling MT; Liu L; Lee JE; Vogel JP; O'Malley RC; Bezanilla M; Bartley LE; Hazen SP
    Plant J; 2018 Nov; 96(3):532-545. PubMed ID: 30054951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overexpression of SbMyb60 impacts phenylpropanoid biosynthesis and alters secondary cell wall composition in Sorghum bicolor.
    Scully ED; Gries T; Sarath G; Palmer NA; Baird L; Serapiglia MJ; Dien BS; Boateng AA; Ge Z; Funnell-Harris DL; Twigg P; Clemente TE; Sattler SE
    Plant J; 2016 Feb; 85(3):378-95. PubMed ID: 26712107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transgenic ZmMYB167 Miscanthus sinensis with increased lignin to boost bioenergy generation for the bioeconomy.
    Bhatia R; Timms-Taravella E; Roberts LA; Moron-Garcia OM; Hauck B; Dalton S; Gallagher JA; Wagner M; Clifton-Brown J; Bosch M
    Biotechnol Biofuels Bioprod; 2023 Feb; 16(1):29. PubMed ID: 36814294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of cell wall related genes in basal and ear internodes of silking brown-midrib-3, caffeic acid O-methyltransferase (COMT) down-regulated, and normal maize plants.
    Guillaumie S; Goffner D; Barbier O; Martinant JP; Pichon M; Barrière Y
    BMC Plant Biol; 2008 Jun; 8():71. PubMed ID: 18582385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural Redesigning Arabidopsis Lignins into Alkali-Soluble Lignins through the Expression of p-Coumaroyl-CoA:Monolignol Transferase PMT.
    Sibout R; Le Bris P; Legée F; Cézard L; Renault H; Lapierre C
    Plant Physiol; 2016 Mar; 170(3):1358-66. PubMed ID: 26826222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Suppression of a single BAHD gene in Setaria viridis causes large, stable decreases in cell wall feruloylation and increases biomass digestibility.
    de Souza WR; Martins PK; Freeman J; Pellny TK; Michaelson LV; Sampaio BL; Vinecky F; Ribeiro AP; da Cunha BADB; Kobayashi AK; de Oliveira PA; Campanha RB; Pacheco TF; Martarello DCI; Marchiosi R; Ferrarese-Filho O; Dos Santos WD; Tramontina R; Squina FM; Centeno DC; Gaspar M; Braga MR; Tiné MAS; Ralph J; Mitchell RAC; Molinari HBC
    New Phytol; 2018 Apr; 218(1):81-93. PubMed ID: 29315591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methyl jasmonate and salicylic acid are able to modify cell wall but only salicylic acid alters biomass digestibility in the model grass Brachypodium distachyon.
    Napoleão TA; Soares G; Vital CE; Bastos C; Castro R; Loureiro ME; Giordano A
    Plant Sci; 2017 Oct; 263():46-54. PubMed ID: 28818383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of bifunctional ammonia-lyase in grass cell wall biosynthesis.
    Barros J; Serrani-Yarce JC; Chen F; Baxter D; Venables BJ; Dixon RA
    Nat Plants; 2016 May; 2(6):16050. PubMed ID: 27255834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combining enhanced biomass density with reduced lignin level for improved forage quality.
    Gallego-Giraldo L; Shadle G; Shen H; Barros-Rios J; Fresquet Corrales S; Wang H; Dixon RA
    Plant Biotechnol J; 2016 Mar; 14(3):895-904. PubMed ID: 26190611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Range of cell-wall alterations enhance saccharification in Brachypodium distachyon mutants.
    Marriott PE; Sibout R; Lapierre C; Fangel JU; Willats WG; Hofte H; Gómez LD; McQueen-Mason SJ
    Proc Natl Acad Sci U S A; 2014 Oct; 111(40):14601-6. PubMed ID: 25246540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression atlas and comparative coexpression network analyses reveal important genes involved in the formation of lignified cell wall in Brachypodium distachyon.
    Sibout R; Proost S; Hansen BO; Vaid N; Giorgi FM; Ho-Yue-Kuang S; Legée F; Cézart L; Bouchabké-Coussa O; Soulhat C; Provart N; Pasha A; Le Bris P; Roujol D; Hofte H; Jamet E; Lapierre C; Persson S; Mutwil M
    New Phytol; 2017 Aug; 215(3):1009-1025. PubMed ID: 28617955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional characterization of the switchgrass (Panicum virgatum) R2R3-MYB transcription factor PvMYB4 for improvement of lignocellulosic feedstocks.
    Shen H; He X; Poovaiah CR; Wuddineh WA; Ma J; Mann DGJ; Wang H; Jackson L; Tang Y; Neal Stewart C; Chen F; Dixon RA
    New Phytol; 2012 Jan; 193(1):121-136. PubMed ID: 21988539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptional activation of secondary wall biosynthesis by rice and maize NAC and MYB transcription factors.
    Zhong R; Lee C; McCarthy RL; Reeves CK; Jones EG; Ye ZH
    Plant Cell Physiol; 2011 Oct; 52(10):1856-71. PubMed ID: 21908441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LACCASE5 is required for lignification of the Brachypodium distachyon Culm.
    Wang Y; Bouchabke-Coussa O; Lebris P; Antelme S; Soulhat C; Gineau E; Dalmais M; Bendahmane A; Morin H; Mouille G; Legée F; Cézard L; Lapierre C; Sibout R
    Plant Physiol; 2015 May; 168(1):192-204. PubMed ID: 25755252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phylogeny in defining model plants for lignocellulosic ethanol production: a comparative study of Brachypodium distachyon, wheat, maize, and Miscanthus x giganteus leaf and stem biomass.
    Meineke T; Manisseri C; Voigt CA
    PLoS One; 2014; 9(8):e103580. PubMed ID: 25133818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The transcription factor ZmMYB69 represses lignin biosynthesis by activating ZmMYB31/42 expression in maize.
    Qiang Z; Sun H; Ge F; Li W; Li C; Wang S; Zhang B; Zhu L; Zhang S; Wang X; Lai J; Qin F; Zhou Y; Fu Y
    Plant Physiol; 2022 Aug; 189(4):1916-1919. PubMed ID: 35640133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overexpression of GA20-OXIDASE1 impacts plant height, biomass allocation and saccharification efficiency in maize.
    Voorend W; Nelissen H; Vanholme R; De Vliegher A; Van Breusegem F; Boerjan W; Roldán-Ruiz I; Muylle H; Inzé D
    Plant Biotechnol J; 2016 Mar; 14(3):997-1007. PubMed ID: 26903034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.