These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 31217626)

  • 1. Self-stratified and self-powered micro-supercapacitor integrated into a microbial fuel cell operating in human urine.
    Santoro C; Walter XA; Soavi F; Greenman J; Ieropoulos I
    Electrochim Acta; 2019 Jun; 307():241-252. PubMed ID: 31217626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supercapacitive microbial desalination cells: New class of power generating devices for reduction of salinity content.
    Santoro C; Abad FB; Serov A; Kodali M; Howe KJ; Soavi F; Atanassov P
    Appl Energy; 2017 Dec; 208():25-36. PubMed ID: 29302130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supercapacitive paper based microbial fuel cell: High current/power production within a low cost design.
    Santoro C; Winfield J; Theodosiou P; Ieropoulos I
    Bioresour Technol Rep; 2019 Sep; 7():100297. PubMed ID: 31853518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Air-breathing cathode self-powered supercapacitive microbial fuel cell with human urine as electrolyte.
    Santoro C; Walter XA; Soavi F; Greenman J; Ieropoulos I
    Electrochim Acta; 2020 Sep; 353():136530. PubMed ID: 32884155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased power generation in supercapacitive microbial fuel cell stack using Fe-N-C cathode catalyst.
    Santoro C; Kodali M; Shamoon N; Serov A; Soavi F; Merino-Jimenez I; Gajda I; Greenman J; Ieropoulos I; Atanassov P
    J Power Sources; 2019 Feb; 412():416-424. PubMed ID: 30774187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-feeding paper based biofuel cell/self-powered hybrid μ-supercapacitor integrated system.
    Narvaez Villarrubia CW; Soavi F; Santoro C; Arbizzani C; Serov A; Rojas-Carbonell S; Gupta G; Atanassov P
    Biosens Bioelectron; 2016 Dec; 86():459-465. PubMed ID: 27424264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supercapacitive microbial fuel cell: Characterization and analysis for improved charge storage/delivery performance.
    Houghton J; Santoro C; Soavi F; Serov A; Ieropoulos I; Arbizzani C; Atanassov P
    Bioresour Technol; 2016 Oct; 218():552-60. PubMed ID: 27400393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-powered supercapacitive microbial fuel cell: The ultimate way of boosting and harvesting power.
    Santoro C; Soavi F; Serov A; Arbizzani C; Atanassov P
    Biosens Bioelectron; 2016 Apr; 78():229-235. PubMed ID: 26615513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scaling up self-stratifying supercapacitive microbial fuel cell.
    Walter XA; Santoro C; Greenman J; Ieropoulos I
    Int J Hydrogen Energy; 2020 Sep; 45(46):25240-25248. PubMed ID: 32982026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stability characterization and modeling of robust distributed benthic microbial fuel cell (DBMFC) system.
    Karra U; Huang G; Umaz R; Tenaglier C; Wang L; Li B
    Bioresour Technol; 2013 Sep; 144():477-84. PubMed ID: 23890975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating effect of proton-exchange membrane on new air-cathode single-chamber microbial fuel cell configuration for bioenergy recovery from Azorubine dye degradation.
    Kardi SN; Ibrahim N; Rashid NAA; Darzi GN
    Environ Sci Pollut Res Int; 2019 Jul; 26(21):21201-21215. PubMed ID: 31115820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved fuel cell and electrode designs for producing electricity from microbial degradation.
    Park DH; Zeikus JG
    Biotechnol Bioeng; 2003 Feb; 81(3):348-55. PubMed ID: 12474258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox-Active Hydrogel Polymer Electrolytes with Different pH Values for Enhancing the Energy Density of the Hybrid Solid-State Supercapacitor.
    Tang X; Lui YH; Merhi AR; Chen B; Ding S; Zhang B; Hu S
    ACS Appl Mater Interfaces; 2017 Dec; 9(51):44429-44440. PubMed ID: 29206439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement of capacitive performance of polyaniline based hybrid supercapacitor.
    Rahman MM; Joy PM; Uddin MN; Mukhlish MZB; Khan MMR
    Heliyon; 2021 Jul; 7(7):e07407. PubMed ID: 34286117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphite anode surface modification with controlled reduction of specific aryl diazonium salts for improved microbial fuel cells power output.
    Picot M; Lapinsonnière L; Rothballer M; Barrière F
    Biosens Bioelectron; 2011 Oct; 28(1):181-8. PubMed ID: 21803564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rational Design of Porous Nanowall Arrays of Ultrafine Co
    Cao B; Liu B; Xi Z; Cheng Y; Xu X; Jing P; Cheng R; Feng SP; Zhang J
    ACS Appl Mater Interfaces; 2022 Oct; 14(42):47517-47528. PubMed ID: 36240119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A glucose fuel cell for implantable brain-machine interfaces.
    Rapoport BI; Kedzierski JT; Sarpeshkar R
    PLoS One; 2012; 7(6):e38436. PubMed ID: 22719888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A membrane-less Glucose/O
    Ghanam A; Haddour N; Mohammadi H; Amine A; Sabac A; Buret F
    Biosens Bioelectron; 2022 Aug; 210():114335. PubMed ID: 35512581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stratified chemical and microbial characteristics between anode and cathode after long-term operation of plant microbial fuel cells for remediation of metal contaminated soils.
    Guan CY; Hu A; Yu CP
    Sci Total Environ; 2019 Jun; 670():585-594. PubMed ID: 30909036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of initial biofilm growth on the anode impedance of microbial fuel cells.
    Ramasamy RP; Ren Z; Mench MM; Regan JM
    Biotechnol Bioeng; 2008 Sep; 101(1):101-8. PubMed ID: 18646217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.