BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

839 related articles for article (PubMed ID: 31218631)

  • 21. Structural Characterization of Membrane-Curving Proteins: Site-Directed Spin Labeling, EPR, and Computational Refinement.
    Ambroso MR; Haworth IS; Langen R
    Methods Enzymol; 2015; 564():259-88. PubMed ID: 26477254
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Probing Structural Dynamics and Topology of the KCNE1 Membrane Protein in Lipid Bilayers via Site-Directed Spin Labeling and Electron Paramagnetic Resonance Spectroscopy.
    Sahu ID; Craig AF; Dunagan MM; Troxel KR; Zhang R; Meiberg AG; Harmon CN; McCarrick RM; Kroncke BM; Sanders CR; Lorigan GA
    Biochemistry; 2015 Oct; 54(41):6402-12. PubMed ID: 26418890
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Liquid state DNP for water accessibility measurements on spin-labeled membrane proteins at physiological temperatures.
    Doll A; Bordignon E; Joseph B; Tschaggelar R; Jeschke G
    J Magn Reson; 2012 Sep; 222():34-43. PubMed ID: 22820007
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of Bifunctional Spin Labels for Investigating the Structural and Dynamic Properties of Membrane Proteins Using EPR Spectroscopy.
    Sahu ID; Craig AF; Dunagum MM; McCarrick RM; Lorigan GA
    J Phys Chem B; 2017 Oct; 121(39):9185-9195. PubMed ID: 28877443
    [TBL] [Abstract][Full Text] [Related]  

  • 25. New limits of sensitivity of site-directed spin labeling electron paramagnetic resonance for membrane proteins.
    Bordignon E; Bleicken S
    Biochim Biophys Acta Biomembr; 2018 Apr; 1860(4):841-853. PubMed ID: 29247610
    [No Abstract]   [Full Text] [Related]  

  • 26. Conformational Heterogeneity of β-Barrel Membrane Proteins Observed In Situ Using Orthogonal Spin Labels and Pulsed ESR Spectroscopy.
    Ketter S; Gopinath A; Joseph B
    Methods Mol Biol; 2024; 2778():237-257. PubMed ID: 38478282
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Selective High-Resolution Detection of Membrane Protein-Ligand Interaction in Native Membranes Using Trityl-Nitroxide PELDOR.
    Joseph B; Tormyshev VM; Rogozhnikova OY; Akhmetzyanov D; Bagryanskaya EG; Prisner TF
    Angew Chem Int Ed Engl; 2016 Sep; 55(38):11538-42. PubMed ID: 27511025
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-field EPR and ESEEM investigation of the nitrogen quadrupole interaction of nitroxide spin labels in disordered solids: toward differentiation between polarity and proticity matrix effects on protein function.
    Savitsky A; Dubinskii AA; Plato M; Grishin YA; Zimmermann H; Möbius K
    J Phys Chem B; 2008 Jul; 112(30):9079-90. PubMed ID: 18593147
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Navigating Membrane Protein Structure, Dynamics, and Energy Landscapes Using Spin Labeling and EPR Spectroscopy.
    Claxton DP; Kazmier K; Mishra S; Mchaourab HS
    Methods Enzymol; 2015; 564():349-87. PubMed ID: 26477257
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Surface electrostatics of lipid bilayers by EPR of a pH-sensitive spin-labeled lipid.
    Voinov MA; Rivera-Rivera I; Smirnov AI
    Biophys J; 2013 Jan; 104(1):106-16. PubMed ID: 23332063
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gd³⁺ Spin Labeling for Measuring Distances in Biomacromolecules: Why and How?
    Feintuch A; Otting G; Goldfarb D
    Methods Enzymol; 2015; 563():415-57. PubMed ID: 26478494
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-field EPR on membrane proteins - crossing the gap to NMR.
    Möbius K; Lubitz W; Savitsky A
    Prog Nucl Magn Reson Spectrosc; 2013 Nov; 75():1-49. PubMed ID: 24160760
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Probing protein conformation in cells by EPR distance measurements using Gd3+ spin labeling.
    Martorana A; Bellapadrona G; Feintuch A; Di Gregorio E; Aime S; Goldfarb D
    J Am Chem Soc; 2014 Sep; 136(38):13458-65. PubMed ID: 25163412
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Overhauser Dynamic Nuclear Polarization for the Study of Hydration Dynamics, Explained.
    Franck JM; Han S
    Methods Enzymol; 2019; 615():131-175. PubMed ID: 30638529
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Substrate-induced conformational changes of the periplasmic N-terminus of an outer-membrane transporter by site-directed spin labeling.
    Fanucci GE; Coggshall KA; Cadieux N; Kim M; Kadner RJ; Cafiso DS
    Biochemistry; 2003 Feb; 42(6):1391-400. PubMed ID: 12578351
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Combining high-field EPR with site-directed spin labeling reveals unique information on proteins in action.
    Möbius K; Savitsky A; Wegener C; Plato M; Fuchs M; Schnegg A; Dubinskii AA; Grishin YA; Grigor'ev IA; Kühn M; Duché D; Zimmermann H; Steinhoff HJ
    Magn Reson Chem; 2005 Nov; 43 Spec no.():S4-S19. PubMed ID: 16235212
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gd(III)-PyMTA label is suitable for in-cell EPR.
    Qi M; Gross A; Jeschke G; Godt A; Drescher M
    J Am Chem Soc; 2014 Oct; 136(43):15366-78. PubMed ID: 25325832
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gd(3+) Spin Labels Report the Conformation and Solvent Accessibility of Solution and Vesicle-Bound Melittin.
    Manukovsky N; Frydman V; Goldfarb D
    J Phys Chem B; 2015 Oct; 119(43):13732-41. PubMed ID: 26001213
    [TBL] [Abstract][Full Text] [Related]  

  • 39. C2 domain of protein kinase C alpha: elucidation of the membrane docking surface by site-directed fluorescence and spin labeling.
    Kohout SC; Corbalán-García S; Gómez-Fernández JC; Falke JJ
    Biochemistry; 2003 Feb; 42(5):1254-65. PubMed ID: 12564928
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Orthogonal spin labeling using click chemistry for in vitro and in vivo applications.
    Kucher S; Korneev S; Tyagi S; Apfelbaum R; Grohmann D; Lemke EA; Klare JP; Steinhoff HJ; Klose D
    J Magn Reson; 2017 Feb; 275():38-45. PubMed ID: 27992783
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 42.