These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 31218690)

  • 1. In Vitro Bioaccessibility of Low-Crystallinity Phytosterol Nanoparticles Generated Using Nanoporous Starch Bioaerogels.
    Ubeyitogullari A; Moreau R; Rose DJ; Ciftci ON
    J Food Sci; 2019 Jul; 84(7):1812-1819. PubMed ID: 31218690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro bioaccessibility of novel low-crystallinity phytosterol nanoparticles in non-fat and regular-fat foods.
    Ubeyitogullari A; Ciftci ON
    Food Res Int; 2019 Sep; 123():27-35. PubMed ID: 31284977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel and green nanoparticle formation approach to forming low-crystallinity curcumin nanoparticles to improve curcumin's bioaccessibility.
    Ubeyitogullari A; Ciftci ON
    Sci Rep; 2019 Dec; 9(1):19112. PubMed ID: 31836788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Food protein-based phytosterol nanoparticles: fabrication and characterization.
    Cao WJ; Ou SY; Lin WF; Tang CH
    Food Funct; 2016 Sep; 7(9):3973-80. PubMed ID: 27549740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polysaccharide-based porous biopolymers for enhanced bioaccessibility and bioavailability of bioactive food compounds: Challenges, advances, and opportunities.
    Ubeyitogullari A; Ahmadzadeh S; Kandhola G; Kim JW
    Compr Rev Food Sci Food Saf; 2022 Nov; 21(6):4610-4639. PubMed ID: 36199178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of nanoporous aerogels from wheat starch.
    Ubeyitogullari A; Ciftci ON
    Carbohydr Polym; 2016 Aug; 147():125-132. PubMed ID: 27178916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chitosan-coated soybean protein isolate/lecithin nanoparticles for enhancing the stability and bioaccessibility of phytosterol.
    Cheng M; Tao Y; Wang C; Li A
    J Sci Food Agric; 2024 May; 104(7):4242-4250. PubMed ID: 38288644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro digestion of starch and protein aerogels generated from defatted rice bran via supercritical carbon dioxide drying.
    Kaur S; Ubeyitogullari A
    Food Chem; 2024 Oct; 455():139833. PubMed ID: 38833864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Phytosterols on the Crystallization Behavior of Oil-in-Water Milk Fat Emulsions.
    Zychowski LM; Logan A; Augustin MA; Kelly AL; Zabara A; O'Mahony JA; Conn CE; Auty MA
    J Agric Food Chem; 2016 Aug; 64(34):6546-54. PubMed ID: 27476512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytosterols and their extraction from various plant matrices using supercritical carbon dioxide: a review.
    Uddin MS; Sarker MZ; Ferdosh S; Akanda MJ; Easmin MS; Bt Shamsudin SH; Bin Yunus K
    J Sci Food Agric; 2015 May; 95(7):1385-94. PubMed ID: 25048690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of molecular interactions between hydrophilic phytosterol glycosyl derivatives and bile salts on the micellar solubility of cholesterol.
    Hu Y; Ma C; Yang R; Guo S; Wang T; Liu J
    Food Res Int; 2023 May; 167():112642. PubMed ID: 37087234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developing dual nano/macroporous starch bioaerogels via emulsion templating and supercritical carbon dioxide drying.
    Alavi F; Ciftci ON
    Carbohydr Polym; 2022 Sep; 292():119607. PubMed ID: 35725150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supplementation of test meals with fat-free phytosterol products can reduce cholesterol micellarization during simulated digestion and cholesterol accumulation by Caco-2 cells.
    Bohn T; Tian Q; Chitchumroonchokchai C; Failla ML; Schwartz SJ; Cotter R; Waksman JA
    J Agric Food Chem; 2007 Jan; 55(2):267-72. PubMed ID: 17227052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stabilized nanoparticles of phytosterol by rapid expansion from supercritical solution into aqueous solution.
    Türk M; Lietzow R
    AAPS PharmSciTech; 2004 Sep; 5(4):e56. PubMed ID: 15760053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phytosterol crystallisation within bulk and dispersed triacylglycerol matrices as influenced by oil droplet size and low molecular weight surfactant addition.
    Zychowski LM; Logan A; Augustin MA; Kelly AL; O'Mahony JA; Conn CE; Auty MAE
    Food Chem; 2018 Oct; 264():24-33. PubMed ID: 29853371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oral absorption of phytosterols and emulsified phytosterols by Sprague-Dawley rats.
    Delaney B; Stevens LA; Schmelzer W; Haworth J; McCurry S; Hilfinger JM; Kim JS; Tsume Y; Amidon GL; Kritchevsky D
    J Nutr Biochem; 2004 May; 15(5):289-95. PubMed ID: 15135153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Green and single-step simultaneous composite starch aerogel formation-high bioavailability curcumin particle formation.
    Alavi F; Ciftci ON
    Int J Biol Macromol; 2024 Apr; 264(Pt 1):129945. PubMed ID: 38311127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pearling barley and rye to produce phytosterol-rich fractions.
    Lampi AM; Moreau RA; Piironen V; Hicks KB
    Lipids; 2004 Aug; 39(8):783-7. PubMed ID: 15638247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioavailability of nanotechnology-based bioactives and nutraceuticals.
    Jones D; Caballero S; Davidov-Pardo G
    Adv Food Nutr Res; 2019; 88():235-273. PubMed ID: 31151725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water-Dispersible Phytosterol Nanoparticles: Preparation, Characterization, and
    Li A; Zhu A; Kong D; Wang C; Liu S; Zhou L; Cheng M
    Front Nutr; 2021; 8():793009. PubMed ID: 35096938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.