These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
386 related articles for article (PubMed ID: 31219171)
1. The hydraulic retention time influences the abundance of Enterobacter, Clostridium and Lactobacillus during the hydrogen production from food waste. Santiago SG; Trably E; Latrille E; Buitrón G; Moreno-Andrade I Lett Appl Microbiol; 2019 Sep; 69(3):138-147. PubMed ID: 31219171 [TBL] [Abstract][Full Text] [Related]
2. Harnessing dark fermentative hydrogen from pretreated mixture of food waste and sewage sludge under sequencing batch mode. Nam JY; Kim DH; Kim SH; Lee W; Shin HS; Kim HW Environ Sci Pollut Res Int; 2016 Apr; 23(8):7155-61. PubMed ID: 26150291 [TBL] [Abstract][Full Text] [Related]
3. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
4. Roles of microorganisms other than Clostridium and Enterobacter in anaerobic fermentative biohydrogen production systems--a review. Hung CH; Chang YT; Chang YJ Bioresour Technol; 2011 Sep; 102(18):8437-44. PubMed ID: 21429742 [TBL] [Abstract][Full Text] [Related]
5. Biohydrogen production from Tequila vinasses in an anaerobic sequencing batch reactor: effect of initial substrate concentration, temperature and hydraulic retention time. Buitrón G; Carvajal C Bioresour Technol; 2010 Dec; 101(23):9071-7. PubMed ID: 20655747 [TBL] [Abstract][Full Text] [Related]
6. Hydrogen metabolic patterns driven by Clostridium-Streptococcus community shifts in a continuous stirred tank reactor. Palomo-Briones R; Trably E; López-Lozano NE; Celis LB; Méndez-Acosta HO; Bernet N; Razo-Flores E Appl Microbiol Biotechnol; 2018 Mar; 102(5):2465-2475. PubMed ID: 29335876 [TBL] [Abstract][Full Text] [Related]
7. Mixed-culture H Anburajan P; Park JH; Sivagurunathan P; Pugazhendhi A; Kumar G; Choi CS; Kim SH J Biosci Bioeng; 2017 Sep; 124(3):339-345. PubMed ID: 28528789 [TBL] [Abstract][Full Text] [Related]
8. Continuous hydrogen production from organic waste. Noike T; Ko IB; Yokoyama S; Kohno Y; Li YY Water Sci Technol; 2005; 52(1-2):145-51. PubMed ID: 16180421 [TBL] [Abstract][Full Text] [Related]
9. Organic loading rate impact on biohydrogen production and microbial communities at anaerobic fluidized thermophilic bed reactors treating sugarcane stillage. Santos SC; Rosa PR; Sakamoto IK; Varesche MB; Silva EL Bioresour Technol; 2014 May; 159():55-63. PubMed ID: 24632626 [TBL] [Abstract][Full Text] [Related]
11. Fermentative hydrogen production and bacterial community structure in high-rate anaerobic bioreactors containing silicone-immobilized and self-flocculated sludge. Wu SY; Hung CH; Lin CN; Chen HW; Lee AS; Chang JS Biotechnol Bioeng; 2006 Apr; 93(5):934-46. PubMed ID: 16329152 [TBL] [Abstract][Full Text] [Related]
12. Biohydrogen production from enzymatic hydrolysis of food waste in batch and continuous systems. Han W; Yan Y; Shi Y; Gu J; Tang J; Zhao H Sci Rep; 2016 Dec; 6():38395. PubMed ID: 27910937 [TBL] [Abstract][Full Text] [Related]
13. High-rate biohydrogen production from xylose using a dynamic membrane bioreactor. Baik JH; Jung JH; Sim YB; Park JH; Kim SM; Yang J; Kim SH Bioresour Technol; 2022 Jan; 344(Pt A):126205. PubMed ID: 34715337 [TBL] [Abstract][Full Text] [Related]
14. Improvement of biohydrogen production using a reduced pressure fermentation. Kisielewska M; Dębowski M; Zieliński M Bioprocess Biosyst Eng; 2015 Oct; 38(10):1925-33. PubMed ID: 26111633 [TBL] [Abstract][Full Text] [Related]
15. Biogenic hydrogen conversion of de-oiled jatropha waste via anaerobic sequencing batch reactor operation: process performance, microbial insights, and CO2 reduction efficiency. Kumar G; Lin CY ScientificWorldJournal; 2014; 2014():946503. PubMed ID: 24672398 [TBL] [Abstract][Full Text] [Related]
16. Effects of initial lactic acid concentration, HRTs, and OLRs on bio-hydrogen production from lactate-type fermentation. Kim TH; Lee Y; Chang KH; Hwang SJ Bioresour Technol; 2012 Jan; 103(1):136-41. PubMed ID: 22071244 [TBL] [Abstract][Full Text] [Related]
17. Effects of key operational parameters on biohydrogen production via anaerobic fermentation in a sequencing batch reactor. Won SG; Lau AK Bioresour Technol; 2011 Jul; 102(13):6876-83. PubMed ID: 21530239 [TBL] [Abstract][Full Text] [Related]
18. Comparative study of reactor performance and microbial community in psychrophilic and mesophilic biogas digesters under solid state condition. Wei S; Guo Y J Biosci Bioeng; 2018 May; 125(5):543-551. PubMed ID: 29305269 [TBL] [Abstract][Full Text] [Related]
19. Analysis of microbial community adaptation in mesophilic hydrogen fermentation from food waste by tagged 16S rRNA gene pyrosequencing. Laothanachareon T; Kanchanasuta S; Mhuanthong W; Phalakornkule C; Pisutpaisal N; Champreda V J Environ Manage; 2014 Nov; 144():143-51. PubMed ID: 24945701 [TBL] [Abstract][Full Text] [Related]
20. Production of biohythane from food waste via an integrated system of continuously stirred tank and anaerobic fixed bed reactors. Yeshanew MM; Frunzo L; Pirozzi F; Lens PNL; Esposito G Bioresour Technol; 2016 Nov; 220():312-322. PubMed ID: 27591517 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]