These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
386 related articles for article (PubMed ID: 31219171)
21. Dark-fermentative hydrogen production from synthetic lignocellulose hydrolysate by a mixed bacterial culture: The relationship between hydraulic retention time and pH conditions. Zagrodnik R; Duber A; Seifert K Bioresour Technol; 2022 Aug; 358():127309. PubMed ID: 35569715 [TBL] [Abstract][Full Text] [Related]
22. HRT dependent performance and bacterial community population of granular hydrogen-producing mixed cultures fed with galactose. Kumar G; Sivagurunathan P; Park JH; Park JH; Park HD; Yoon JJ; Kim SH Bioresour Technol; 2016 Apr; 206():188-194. PubMed ID: 26859326 [TBL] [Abstract][Full Text] [Related]
23. Effects of operational parameters on dark fermentative hydrogen production from biodegradable complex waste biomass. Ghimire A; Sposito F; Frunzo L; Trably E; Escudié R; Pirozzi F; Lens PN; Esposito G Waste Manag; 2016 Apr; 50():55-64. PubMed ID: 26876775 [TBL] [Abstract][Full Text] [Related]
24. Quantitative analysis of a high-rate hydrogen-producing microbial community in anaerobic agitated granular sludge bed bioreactors using glucose as substrate. Hung CH; Lee KS; Cheng LH; Huang YH; Lin PJ; Chang JS Appl Microbiol Biotechnol; 2007 Jun; 75(3):693-701. PubMed ID: 17440720 [TBL] [Abstract][Full Text] [Related]
25. Changes in bacterial community during fermentative hydrogen and acid production from organic waste by thermophilic anaerobic microflora. Ueno Y; Sasaki D; Fukui H; Haruta S; Ishii M; Igarashi Y J Appl Microbiol; 2006 Aug; 101(2):331-43. PubMed ID: 16882140 [TBL] [Abstract][Full Text] [Related]
26. Hydrogen production from cheese whey with ethanol-type fermentation: effect of hydraulic retention time on the microbial community composition. Rosa PR; Santos SC; Sakamoto IK; Varesche MB; Silva EL Bioresour Technol; 2014 Jun; 161():10-19. PubMed ID: 24681681 [TBL] [Abstract][Full Text] [Related]
27. Carboxylic acids production via anaerobic fermentation: Microbial communities' responses to stepwise and direct hydraulic retention time decrease. Llamas M; Greses S; Tomás-Pejó E; González-Fernández C Bioresour Technol; 2022 Jan; 344(Pt B):126282. PubMed ID: 34752887 [TBL] [Abstract][Full Text] [Related]
28. Metabolic and energetic aspects of biohydrogen production of Clostridium tyrobutyricum: The effects of hydraulic retention time and peptone addition. Whang LM; Lin CA; Liu IC; Wu CW; Cheng HH Bioresour Technol; 2011 Sep; 102(18):8378-83. PubMed ID: 21511461 [TBL] [Abstract][Full Text] [Related]
29. Effects of hydraulic retention time on biohythane production via single-stage anaerobic fermentation in a two-compartment bioreactor. Vo TP; Lay CH; Lin CY Bioresour Technol; 2019 Nov; 292():121869. PubMed ID: 31400653 [TBL] [Abstract][Full Text] [Related]
30. Metabolic flux network analysis of fermentative hydrogen production: using Clostridium tyrobutyricum as an example. Cheng HH; Whang LM; Lin CA; Liu IC; Wu CW Bioresour Technol; 2013 Aug; 141():233-9. PubMed ID: 23659760 [TBL] [Abstract][Full Text] [Related]
31. The effect of pH on continuous biohydrogen production from swine wastewater supplemented with glucose. Li Y; Zhu J; Wu X; Miller C; Wang L Appl Biochem Biotechnol; 2010 Nov; 162(5):1286-96. PubMed ID: 20169419 [TBL] [Abstract][Full Text] [Related]
32. Selecting fermentation products for food waste valorisation with HRT and OLR as the key operational parameters. De Groof V; Coma M; Arnot T; Leak DJ; Lanham AB Waste Manag; 2021 May; 127():80-89. PubMed ID: 33932853 [TBL] [Abstract][Full Text] [Related]
33. Performance evaluation and phylogenetic characterization of anaerobic fluidized bed reactors using ground tire and pet as support materials for biohydrogen production. Barros AR; Adorno MA; Sakamoto IK; Maintinguer SI; Varesche MB; Silva EL Bioresour Technol; 2011 Feb; 102(4):3840-7. PubMed ID: 21185176 [TBL] [Abstract][Full Text] [Related]
34. Effect of operational pH on biohydrogen production from food waste using anaerobic batch reactors. Lee C; Lee S; Han SK; Hwang S Water Sci Technol; 2014; 69(9):1886-93. PubMed ID: 24804664 [TBL] [Abstract][Full Text] [Related]
35. New insights into microbial interactions and putative competitive mechanisms during the hydrogen production from tequila vinasses. Toledo-Cervantes A; Méndez-Acosta HO; Arreola-Vargas J; Gabriel-Barajas JE; Aguilar-Mota MN; Snell-Castro R Appl Microbiol Biotechnol; 2022 Oct; 106(19-20):6861-6876. PubMed ID: 36071291 [TBL] [Abstract][Full Text] [Related]
37. Biological hydrogen production by immobilized cells of Clostridium tyrobutyricum JM1 isolated from a food waste treatment process. Jo JH; Lee DS; Park D; Park JM Bioresour Technol; 2008 Sep; 99(14):6666-72. PubMed ID: 18248983 [TBL] [Abstract][Full Text] [Related]
38. Microbial community composition and reactor performance during hydrogen production in a UASB reactor fed with raw cheese whey inoculated with compost. Castelló E; Perna V; Wenzel J; Borzacconi L; Etchebehere C Water Sci Technol; 2011; 64(11):2265-73. PubMed ID: 22156132 [TBL] [Abstract][Full Text] [Related]
39. Biohydrogen production in the suspended and attached microbial growth systems from waste pastry hydrolysate. Han W; Hu Y; Li S; Li F; Tang J Bioresour Technol; 2016 Oct; 218():589-94. PubMed ID: 27416509 [TBL] [Abstract][Full Text] [Related]
40. Effect of the Organic Loading Rate Increase and the Presence of Zeolite on Microbial Community Composition and Process Stability During Anaerobic Digestion of Chicken Wastes. Ziganshina EE; Belostotskiy DE; Ilinskaya ON; Boulygina EA; Grigoryeva TV; Ziganshin AM Microb Ecol; 2015 Nov; 70(4):948-60. PubMed ID: 26045158 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]