These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 31219334)
21. Enhanced Single Seed Trait Predictions in Soybean (Glycine max) and Robust Calibration Model Transfer with Near-Infrared Reflectance Spectroscopy. Hacisalihoglu G; Gustin JL; Louisma J; Armstrong P; Peter GF; Walker AR; Settles AM J Agric Food Chem; 2016 Feb; 64(5):1079-86. PubMed ID: 26771201 [TBL] [Abstract][Full Text] [Related]
22. Interactions of protein content and globulin subunit composition of soybean proteins in relation to tofu gel properties. James AT; Yang A Food Chem; 2016 Mar; 194():284-9. PubMed ID: 26471556 [TBL] [Abstract][Full Text] [Related]
23. Development and Characterization of a Soybean Experimental Line Lacking the α' Subunit of β-Conglycinin and G1, G2, and G4 Glycinin. Song B; Oehrle NW; Liu S; Krishnan HB J Agric Food Chem; 2018 Jan; 66(2):432-439. PubMed ID: 29227096 [TBL] [Abstract][Full Text] [Related]
24. Investigation of endogenous soybean food allergens by using a 2-dimensional gel electrophoresis approach. Rouquié D; Capt A; Eby WH; Sekar V; Hérouet-Guicheney C Regul Toxicol Pharmacol; 2010 Dec; 58(3 Suppl):S47-53. PubMed ID: 20932868 [TBL] [Abstract][Full Text] [Related]
25. Comparative metabolic profiling reveals secondary metabolites correlated with soybean salt tolerance. Wu W; Zhang Q; Zhu Y; Lam HM; Cai Z; Guo D J Agric Food Chem; 2008 Dec; 56(23):11132-8. PubMed ID: 19007129 [TBL] [Abstract][Full Text] [Related]
26. Non-destructive technique for determining the viability of soybean (Glycine max) seeds using FT-NIR spectroscopy. Kusumaningrum D; Lee H; Lohumi S; Mo C; Kim MS; Cho BK J Sci Food Agric; 2018 Mar; 98(5):1734-1742. PubMed ID: 28858390 [TBL] [Abstract][Full Text] [Related]
27. Discrimination of transgenic soybean seeds by terahertz spectroscopy. Liu W; Liu C; Chen F; Yang J; Zheng L Sci Rep; 2016 Oct; 6():35799. PubMed ID: 27782205 [TBL] [Abstract][Full Text] [Related]
28. Simple and rapid characterization of soybean cultivars by perfusion reversed-phase HPLC: application to the estimation of the 11S and 7S globulin contents. Concepción García M; Heras JM; Marina ML J Sep Sci; 2007 Mar; 30(4):475-82. PubMed ID: 17444216 [TBL] [Abstract][Full Text] [Related]
29. [The NIR spectra based variety discrimination for single soybean seed]. Zhu DZ; Wang K; Zhou GH; Hou RF; Wang C Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Dec; 30(12):3217-21. PubMed ID: 21322209 [TBL] [Abstract][Full Text] [Related]
30. Measurement of single soybean seed attributes by near-infrared technologies. A comparative study. Esteve Agelet L; Armstrong PR; Romagosa Clariana I; Hurburgh CR J Agric Food Chem; 2012 Aug; 60(34):8314-22. PubMed ID: 22831652 [TBL] [Abstract][Full Text] [Related]
31. Identification of anisodamine tablets by Raman and near-infrared spectroscopy with chemometrics. Li L; Zang H; Li J; Chen D; Li T; Wang F Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jun; 127():91-7. PubMed ID: 24632161 [TBL] [Abstract][Full Text] [Related]
32. The composition of glyphosate-tolerant soybean seeds is equivalent to that of conventional soybeans. Padgette SR; Taylor NB; Nida DL; Bailey MR; MacDonald J; Holden LR; Fuchs RL J Nutr; 1996 Mar; 126(3):702-16. PubMed ID: 8598556 [TBL] [Abstract][Full Text] [Related]
33. Proteomic analysis of high protein soybean (Glycine max) accessions demonstrates the contribution of novel glycinin subunits. Krishnan HB; Nelson RL J Agric Food Chem; 2011 Mar; 59(6):2432-9. PubMed ID: 21344854 [TBL] [Abstract][Full Text] [Related]
34. Discrimination of transgenic and conventional soybean seeds by fourier transform infrared photoacoustic spectroscopy. Caires AR; Teixeira MR; Súarez YR; Andrade LH; Lima SM Appl Spectrosc; 2008 Sep; 62(9):1044-7. PubMed ID: 18801246 [No Abstract] [Full Text] [Related]
35. Positional effect on protein and oil content and composition of soybeans. Bennett JO; Krishnan AH; Wiebold WJ; Krishnan HB J Agric Food Chem; 2003 Nov; 51(23):6882-6. PubMed ID: 14582990 [TBL] [Abstract][Full Text] [Related]
36. Microchemical structure of soybean seeds revealed in situ by ultraspatially resolved synchrotron Fourier transformed infrared microspectroscopy. Pietrzak LN; Miller SS J Agric Food Chem; 2005 Nov; 53(24):9304-11. PubMed ID: 16302740 [TBL] [Abstract][Full Text] [Related]
37. Characterization of Soybean Storage and Allergen Proteins Affected by Environmental and Genetic Factors. Natarajan S; Khan F; Song Q; Lakshman S; Cregan P; Scott R; Shipe E; Garrett W J Agric Food Chem; 2016 Feb; 64(6):1433-45. PubMed ID: 26807503 [TBL] [Abstract][Full Text] [Related]
38. Effects of heat treatment under low moisture conditions on the protein and oil in soybean seeds. Mizutani Y; Shibata M; Yamada S; Nambu Y; Hirotsuka M; Matsumura Y Food Chem; 2019 Mar; 275():577-584. PubMed ID: 30724235 [TBL] [Abstract][Full Text] [Related]
39. In vivo study of lipid accumulation in the microalgae marine diatom Thalassiosira pseudonana using Raman spectroscopy. Meksiarun P; Spegazzini N; Matsui H; Nakajima K; Matsuda Y; Sato H Appl Spectrosc; 2015 Jan; 69(1):45-51. PubMed ID: 25506782 [TBL] [Abstract][Full Text] [Related]
40. New insights on proteomics of transgenic soybean seeds: evaluation of differential expressions of enzymes and proteins. Barbosa HS; Arruda SC; Azevedo RA; Arruda MA Anal Bioanal Chem; 2012 Jan; 402(1):299-314. PubMed ID: 21947011 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]