These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 31219480)

  • 1. The electrochemical double layer and its impedance behavior in lithium-ion batteries.
    Lück J; Latz A
    Phys Chem Chem Phys; 2019 Jul; 21(27):14753-14765. PubMed ID: 31219480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling of the electrochemical double layer and its impact on intercalation reactions.
    Lück J; Latz A
    Phys Chem Chem Phys; 2018 Nov; 20(44):27804-27821. PubMed ID: 30379165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theory of reactions at electrified interfaces.
    Lück J; Latz A
    Phys Chem Chem Phys; 2016 Jul; 18(27):17799-804. PubMed ID: 27215943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new perspective on the electron transfer: recovering the Butler-Volmer equation in non-equilibrium thermodynamics.
    Dreyer W; Guhlke C; Müller R
    Phys Chem Chem Phys; 2016 Sep; 18(36):24966-83. PubMed ID: 27560993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impedance response of electrochemical interfaces: part II-chemisorption.
    Huang J; Li CK
    J Phys Condens Matter; 2021 Apr; 33(16):. PubMed ID: 33730712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon-Based Materials for Lithium-Ion Batteries, Electrochemical Capacitors, and Their Hybrid Devices.
    Yao F; Pham DT; Lee YH
    ChemSusChem; 2015 Jul; 8(14):2284-311. PubMed ID: 26140707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into the Importance of Native Passivation Layer and Interface Reactivity of Metallic Lithium by Electrochemical Impedance Spectroscopy.
    Srout M; Carboni M; Gonzalez JA; Trabesinger S
    Small; 2023 Feb; 19(7):e2206252. PubMed ID: 36464645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lithium ion phase-transfer reaction at the interface between the lithium manganese oxide electrode and the nonaqueous electrolyte.
    Kobayashi S; Uchimoto Y
    J Phys Chem B; 2005 Jul; 109(27):13322-6. PubMed ID: 16852662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impedance response of electrochemical interfaces. III. Fingerprints of couplings between interfacial electron transfer reaction and electrolyte-phase ion transport.
    Li CK; Zhang J; Huang J
    J Chem Phys; 2022 Nov; 157(18):184704. PubMed ID: 36379766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Voltage hysteresis of lithium ion batteries caused by mechanical stress.
    Lu B; Song Y; Zhang Q; Pan J; Cheng YT; Zhang J
    Phys Chem Chem Phys; 2016 Feb; 18(6):4721-7. PubMed ID: 26799574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multistage Mechanism of Lithium Intercalation into Graphite Anodes in the Presence of the Solid Electrolyte Interface.
    Dinkelacker F; Marzak P; Yun J; Liang Y; Bandarenka AS
    ACS Appl Mater Interfaces; 2018 Apr; 10(16):14063-14069. PubMed ID: 29539259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Negating interfacial impedance in garnet-based solid-state Li metal batteries.
    Han X; Gong Y; Fu KK; He X; Hitz GT; Dai J; Pearse A; Liu B; Wang H; Rubloff G; Mo Y; Thangadurai V; Wachsman ED; Hu L
    Nat Mater; 2017 May; 16(5):572-579. PubMed ID: 27992420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing the morphological influence on solid electrolyte interphase and impedance response in intercalation electrodes.
    Chen CF; Mukherjee PP
    Phys Chem Chem Phys; 2015 Apr; 17(15):9812-27. PubMed ID: 25774495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impedance Analysis of Capacitive and Faradaic Processes in the Pt/[Dema][TfO] Interface.
    Chen Y; Wippermann K; Rodenbücher C; Suo Y; Korte C
    ACS Appl Mater Interfaces; 2024 Jan; 16(4):5278-5285. PubMed ID: 38247120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New insights into the interface between a single-crystalline metal electrode and an extremely pure ionic liquid: slow interfacial processes and the influence of temperature on interfacial dynamics.
    Drüschler M; Borisenko N; Wallauer J; Winter C; Huber B; Endres F; Roling B
    Phys Chem Chem Phys; 2012 Apr; 14(15):5090-9. PubMed ID: 22402629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated description of electrode/electrolyte interfaces based on equivalent circuits and its verification using impedance measurements.
    Chang BY; Park SM
    Anal Chem; 2006 Feb; 78(4):1052-60. PubMed ID: 16478095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning the stability of electrochemical interfaces by electron transfer reactions.
    Fraggedakis D; Bazant MZ
    J Chem Phys; 2020 May; 152(18):184703. PubMed ID: 32414269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics.
    Bazant MZ
    Acc Chem Res; 2013 May; 46(5):1144-60. PubMed ID: 23520980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A simplified fractional order impedance model and parameter identification method for lithium-ion batteries.
    Yang Q; Xu J; Cao B; Li X
    PLoS One; 2017; 12(2):e0172424. PubMed ID: 28212405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.