BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 31219770)

  • 1. Hopping with degressive spring stiffness in a full-leg exoskeleton lowers metabolic cost compared with progressive spring stiffness and hopping without assistance.
    Allen SP; Grabowski AM
    J Appl Physiol (1985); 2019 Aug; 127(2):520-530. PubMed ID: 31219770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The spring stiffness profile within a passive, full-leg exoskeleton affects lower-limb joint mechanics while hopping.
    Allen SP; Grabowski AM
    R Soc Open Sci; 2024 Mar; 11(3):231449. PubMed ID: 38511081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leg exoskeleton reduces the metabolic cost of human hopping.
    Grabowski AM; Herr HM
    J Appl Physiol (1985); 2009 Sep; 107(3):670-8. PubMed ID: 19423835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linking the mechanics and energetics of hopping with elastic ankle exoskeletons.
    Farris DJ; Sawicki GS
    J Appl Physiol (1985); 2012 Dec; 113(12):1862-72. PubMed ID: 23065760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Musculoskeletal modelling deconstructs the paradoxical effects of elastic ankle exoskeletons on plantar-flexor mechanics and energetics during hopping.
    Farris DJ; Hicks JL; Delp SL; Sawicki GS
    J Exp Biol; 2014 Nov; 217(Pt 22):4018-28. PubMed ID: 25278469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuromechanical adaptation to hopping with an elastic ankle-foot orthosis.
    Ferris DP; Bohra ZA; Lukos JR; Kinnaird CR
    J Appl Physiol (1985); 2006 Jan; 100(1):163-70. PubMed ID: 16179395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of elastic ankle exoskeleton stiffness on neuromechanics and energetics of human walking across multiple speeds.
    Nuckols RW; Sawicki GS
    J Neuroeng Rehabil; 2020 Jun; 17(1):75. PubMed ID: 32539840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Running With an Elastic Lower Limb Exoskeleton.
    Cherry MS; Kota S; Young A; Ferris DP
    J Appl Biomech; 2016 Jun; 32(3):269-77. PubMed ID: 26694976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The interday reliability of ankle, knee, leg, and vertical musculoskeletal stiffness during hopping and overground running.
    Joseph CW; Bradshaw EJ; Kemp J; Clark RA
    J Appl Biomech; 2013 Aug; 29(4):386-94. PubMed ID: 22923423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Passive-elastic knee-ankle exoskeleton reduces the metabolic cost of walking.
    Etenzi E; Borzuola R; Grabowski AM
    J Neuroeng Rehabil; 2020 Jul; 17(1):104. PubMed ID: 32718344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linear center-of-mass dynamics emerge from non-linear leg-spring properties in human hopping.
    Riese S; Seyfarth A; Grimmer S
    J Biomech; 2013 Sep; 46(13):2207-12. PubMed ID: 23880438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An experimental comparison of the relative benefits of work and torque assistance in ankle exoskeletons.
    Jackson RW; Collins SH
    J Appl Physiol (1985); 2015 Sep; 119(5):541-57. PubMed ID: 26159764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elastic ankle exoskeletons reduce soleus muscle force but not work in human hopping.
    Farris DJ; Robertson BD; Sawicki GS
    J Appl Physiol (1985); 2013 Sep; 115(5):579-85. PubMed ID: 23788578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sex differences in relationship between passive ankle stiffness and leg stiffness during hopping.
    Hobara H; Kato E; Kobayashi Y; Ogata T
    J Biomech; 2012 Nov; 45(16):2750-4. PubMed ID: 23051683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Musculoskeletal stiffness during hopping and running does not change following downhill backwards walking.
    Joseph CW; Bradshaw EJ; Kemp J; Clark RA
    Sports Biomech; 2014 Sep; 13(3):241-58. PubMed ID: 25325769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scaling of the spring in the leg during bouncing gaits of mammals.
    Lee DV; Isaacs MR; Higgins TE; Biewener AA; McGowan CP
    Integr Comp Biol; 2014 Dec; 54(6):1099-108. PubMed ID: 25305189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. More is not always better: modeling the effects of elastic exoskeleton compliance on underlying ankle muscle-tendon dynamics.
    Robertson BD; Farris DJ; Sawicki GS
    Bioinspir Biomim; 2014 Nov; 9(4):046018. PubMed ID: 25417578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vertical stiffness during one-legged hopping with and without using a running-specific prosthesis.
    Hobara H; Hashizume S; Funken J; Willwacher S; Müller R; Grabowski AM; Potthast W
    J Biomech; 2019 Mar; 86():34-39. PubMed ID: 30770198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bilateral deficit of spring-like behaviour during hopping in sprinters.
    Otsuka M; Kurihara T; Isaka T
    Eur J Appl Physiol; 2018 Feb; 118(2):475-481. PubMed ID: 29260403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of speed on leg stiffness and joint kinetics in human running.
    Arampatzis A; Brüggemann GP; Metzler V
    J Biomech; 1999 Dec; 32(12):1349-53. PubMed ID: 10569714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.