These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 31219770)

  • 41. Leg stiffness and stride frequency in human running.
    Farley CT; González O
    J Biomech; 1996 Feb; 29(2):181-6. PubMed ID: 8849811
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Leg Joint Mechanics When Hopping at Different Frequencies.
    Qiao M
    J Appl Biomech; 2021 Jun; 37(3):263-271. PubMed ID: 33975280
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Constant and variable stiffness and damping of the leg joints in human hopping.
    Rapoport S; Mizrahi J; Kimmel E; Verbitsky O; Isakov E
    J Biomech Eng; 2003 Aug; 125(4):507-14. PubMed ID: 12968575
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mechanics of walking and running up and downhill: A joint-level perspective to guide design of lower-limb exoskeletons.
    Nuckols RW; Takahashi KZ; Farris DJ; Mizrachi S; Riemer R; Sawicki GS
    PLoS One; 2020; 15(8):e0231996. PubMed ID: 32857774
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Passive dynamics change leg mechanics for an unexpected surface during human hopping.
    Moritz CT; Farley CT
    J Appl Physiol (1985); 2004 Oct; 97(4):1313-22. PubMed ID: 15169748
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Leg and joint stiffness in human hopping.
    Kuitunen S; Ogiso K; Komi PV
    Scand J Med Sci Sports; 2011 Dec; 21(6):e159-67. PubMed ID: 22126723
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Neuromuscular changes for hopping on a range of damped surfaces.
    Moritz CT; Greene SM; Farley CT
    J Appl Physiol (1985); 2004 May; 96(5):1996-2004. PubMed ID: 14688034
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of hopping frequency on bilateral differences in leg stiffness.
    Hobara H; Inoue K; Kanosue K
    J Appl Biomech; 2013 Feb; 29(1):55-60. PubMed ID: 23462443
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bipedal walking and running with spring-like biarticular muscles.
    Iida F; Rummel J; Seyfarth A
    J Biomech; 2008; 41(3):656-67. PubMed ID: 17996242
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A review of research on the mechanical stiffness in running and jumping: methodology and implications.
    Brughelli M; Cronin J
    Scand J Med Sci Sports; 2008 Aug; 18(4):417-26. PubMed ID: 18282225
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Coupled exoskeleton assistance simplifies control and maintains metabolic benefits: A simulation study.
    Bianco NA; Franks PW; Hicks JL; Delp SL
    PLoS One; 2022; 17(1):e0261318. PubMed ID: 34986191
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Interaction of leg stiffness and surfaces stiffness during human hopping.
    Ferris DP; Farley CT
    J Appl Physiol (1985); 1997 Jan; 82(1):15-22; discussion 13-4. PubMed ID: 9029193
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Leg power and hopping stiffness: relationship with sprint running performance.
    Chelly SM; Denis C
    Med Sci Sports Exerc; 2001 Feb; 33(2):326-33. PubMed ID: 11224825
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Spring-like leg behaviour, musculoskeletal mechanics and control in maximum and submaximum height human hopping.
    Bobbert MF; Richard Casius LJ
    Philos Trans R Soc Lond B Biol Sci; 2011 May; 366(1570):1516-29. PubMed ID: 21502123
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Exoskeleton control for lower-extremity assistance based on adaptive frequency oscillators: adaptation of muscle activation and movement frequency.
    Aguirre-Ollinger G
    Proc Inst Mech Eng H; 2015 Jan; 229(1):52-68. PubMed ID: 25655955
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Joint stiffness of the ankle and the knee in running.
    Günther M; Blickhan R
    J Biomech; 2002 Nov; 35(11):1459-74. PubMed ID: 12413965
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Stance leg control: variation of leg parameters supports stable hopping.
    Riese S; Seyfarth A
    Bioinspir Biomim; 2012 Mar; 7(1):016006. PubMed ID: 22183256
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Hopping frequency in humans: a test of how springs set stride frequency in bouncing gaits.
    Farley CT; Blickhan R; Saito J; Taylor CR
    J Appl Physiol (1985); 1991 Dec; 71(6):2127-32. PubMed ID: 1778902
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Improving the energy economy of human running with powered and unpowered ankle exoskeleton assistance.
    Witte KA; Fiers P; Sheets-Singer AL; Collins SH
    Sci Robot; 2020 Mar; 5(40):. PubMed ID: 33022600
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Human hopping on damped surfaces: strategies for adjusting leg mechanics.
    Moritz CT; Farley CT
    Proc Biol Sci; 2003 Aug; 270(1525):1741-6. PubMed ID: 12965003
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.