These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 31220222)

  • 21. Functional cerebral asymmetry analyses reveal how the control system implements its flexibility.
    Chen Z; Zhao X; Fan J; Chen A
    Hum Brain Mapp; 2018 Dec; 39(12):4678-4688. PubMed ID: 30015380
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evidence for anterior cingulate cortex involvement in monitoring preparatory attentional set.
    Luks TL; Simpson GV; Feiwell RJ; Miller WL
    Neuroimage; 2002 Oct; 17(2):792-802. PubMed ID: 12377154
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Monkey dorsolateral prefrontal cortex sends task-selective signals directly to the superior colliculus.
    Johnston K; Everling S
    J Neurosci; 2006 Nov; 26(48):12471-8. PubMed ID: 17135409
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Executive control over cognition: stronger and earlier rule-based modulation of spatial category signals in prefrontal cortex relative to parietal cortex.
    Goodwin SJ; Blackman RK; Sakellaridi S; Chafee MV
    J Neurosci; 2012 Mar; 32(10):3499-515. PubMed ID: 22399773
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cortico-basal ganglia networks subserving goal-directed behavior mediated by conditional visuo-goal association.
    Hoshi E
    Front Neural Circuits; 2013; 7():158. PubMed ID: 24155692
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bottom-Up and Top-Down Factors Differentially Influence Stimulus Representations Across Large-Scale Attentional Networks.
    Long NM; Kuhl BA
    J Neurosci; 2018 Mar; 38(10):2495-2504. PubMed ID: 29437930
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neural networks of response shifting: influence of task speed and stimulus material.
    Loose R; Kaufmann C; Tucha O; Auer DP; Lange KW
    Brain Res; 2006 May; 1090(1):146-55. PubMed ID: 16643867
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Strength of response suppression to distracter stimuli determines attentional-filtering performance in primate prefrontal neurons.
    Lennert T; Martinez-Trujillo J
    Neuron; 2011 Apr; 70(1):141-52. PubMed ID: 21482363
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Correlates of Auditory Decision-Making in Prefrontal, Auditory, and Basal Lateral Amygdala Cortical Areas.
    Napoli JL; Camalier CR; Brown AL; Jacobs J; Mishkin MM; Averbeck BB
    J Neurosci; 2021 Feb; 41(6):1301-1316. PubMed ID: 33303679
    [TBL] [Abstract][Full Text] [Related]  

  • 30. I can't keep your face and voice out of my head: neural correlates of an attentional bias toward nonverbal emotional cues.
    Jacob H; Brück C; Domin M; Lotze M; Wildgruber D
    Cereb Cortex; 2014 Jun; 24(6):1460-73. PubMed ID: 23382516
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Orbital prefrontal cortex is required for object-in-place scene memory but not performance of a strategy implementation task.
    Baxter MG; Gaffan D; Kyriazis DA; Mitchell AS
    J Neurosci; 2007 Oct; 27(42):11327-33. PubMed ID: 17942727
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dorsolateral Prefrontal Cortex Deactivation in Monkeys Reduces Preparatory Beta and Gamma Power in the Superior Colliculus.
    Chan JL; Koval MJ; Womelsdorf T; Lomber SG; Everling S
    Cereb Cortex; 2015 Dec; 25(12):4704-14. PubMed ID: 25037923
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A gateway system in rostral PFC? Evidence from biasing attention to perceptual information and internal representations.
    Henseler I; Krüger S; Dechent P; Gruber O
    Neuroimage; 2011 Jun; 56(3):1666-76. PubMed ID: 21352923
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Anterior Cingulate Cortex Cells Identify Process-Specific Errors of Attentional Control Prior to Transient Prefrontal-Cingulate Inhibition.
    Shen C; Ardid S; Kaping D; Westendorff S; Everling S; Womelsdorf T
    Cereb Cortex; 2015 Aug; 25(8):2213-28. PubMed ID: 24591526
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Early involvement of prefrontal cortex in visual bottom-up attention.
    Katsuki F; Constantinidis C
    Nat Neurosci; 2012 Jul; 15(8):1160-6. PubMed ID: 22820465
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Top-down control of exogenous attentional selection is mediated by beta coherence in prefrontal cortex.
    Dubey A; Markowitz DA; Pesaran B
    Neuron; 2023 Oct; 111(20):3321-3334.e5. PubMed ID: 37499660
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dissociable mechanisms of attentional control within the human prefrontal cortex.
    Nagahama Y; Okada T; Katsumi Y; Hayashi T; Yamauchi H; Oyanagi C; Konishi J; Fukuyama H; Shibasaki H
    Cereb Cortex; 2001 Jan; 11(1):85-92. PubMed ID: 11113037
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Role of Orbitofrontal-Amygdala Interactions in Updating Action-Outcome Valuations in Macaques.
    Fiuzat EC; Rhodes SE; Murray EA
    J Neurosci; 2017 Mar; 37(9):2463-2470. PubMed ID: 28148725
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of the lateral prefrontal cortex in visual object-based selective attention.
    Sinnett S; Snyder JJ; Kingstone A
    Exp Brain Res; 2009 Apr; 194(2):191-6. PubMed ID: 19139861
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Functional connectivity at rest captures individual differences in visual search.
    Bueichekú E; Miró-Padilla A; Ávila C
    Brain Struct Funct; 2020 Mar; 225(2):537-549. PubMed ID: 31897605
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.