These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 31220356)
1. Production of clovamide and its analogues in Saccharomyces cerevisiae and Lactococcus lactis. Bouchez P; Teixeira Benites V; Baidoo EEK; Mortimer JC; Sullivan ML; Scheller HV; Eudes A Lett Appl Microbiol; 2019 Sep; 69(3):181-189. PubMed ID: 31220356 [TBL] [Abstract][Full Text] [Related]
2. Red Clover HDT, a BAHD Hydroxycinnamoyl-Coenzyme A:L-3,4-Dihydroxyphenylalanine (L-DOPA) Hydroxycinnamoyl Transferase That Synthesizes Clovamide and Other Sullivan ML; Knollenberg BJ Front Plant Sci; 2021; 12():727461. PubMed ID: 34868112 [TBL] [Abstract][Full Text] [Related]
3. Production of hydroxycinnamoyl anthranilates from glucose in Escherichia coli. Eudes A; Juminaga D; Baidoo EE; Collins FW; Keasling JD; Loqué D Microb Cell Fact; 2013 Jun; 12():62. PubMed ID: 23806124 [TBL] [Abstract][Full Text] [Related]
4. Exploiting members of the BAHD acyltransferase family to synthesize multiple hydroxycinnamate and benzoate conjugates in yeast. Eudes A; Mouille M; Robinson DS; Benites VT; Wang G; Roux L; Tsai YL; Baidoo EE; Chiu TY; Heazlewood JL; Scheller HV; Mukhopadhyay A; Keasling JD; Deutsch S; Loqué D Microb Cell Fact; 2016 Nov; 15(1):198. PubMed ID: 27871334 [TBL] [Abstract][Full Text] [Related]
5. Heterologous expression of the plant coumarate: CoA ligase in Lactococcus lactis. Martínez-Cuesta MC; Gasson MJ; Narbad A Lett Appl Microbiol; 2005; 40(1):44-9. PubMed ID: 15613001 [TBL] [Abstract][Full Text] [Related]
6. Production of tranilast [N-(3',4'-dimethoxycinnamoyl)-anthranilic acid] and its analogs in yeast Saccharomyces cerevisiae. Eudes A; Baidoo EE; Yang F; Burd H; Hadi MZ; Collins FW; Keasling JD; Loqué D Appl Microbiol Biotechnol; 2011 Feb; 89(4):989-1000. PubMed ID: 20972784 [TBL] [Abstract][Full Text] [Related]
7. Synthesis of lipophilic clovamide derivatives and their antioxidative potential against lipid peroxidation. Ley JP; Bertram HJ J Agric Food Chem; 2003 Jul; 51(16):4596-602. PubMed ID: 14705883 [TBL] [Abstract][Full Text] [Related]
8. Engineering Lactococcus lactis for the production of unusual anthocyanins using tea as substrate. Solopova A; van Tilburg AY; Foito A; Allwood JW; Stewart D; Kulakauskas S; Kuipers OP Metab Eng; 2019 Jul; 54():160-169. PubMed ID: 30978503 [TBL] [Abstract][Full Text] [Related]
9. Engineering of Microbial Cell Factories for the Production of Plant Polyphenols with Health-Beneficial Properties. Dudnik A; Gaspar P; Neves AR; Forster J Curr Pharm Des; 2018; 24(19):2208-2225. PubMed ID: 29766793 [TBL] [Abstract][Full Text] [Related]
10. Exploiting Spermidine Perrin J; Kulagina N; Unlubayir M; Munsch T; Carqueijeiro I; Dugé de Bernonville T; De Craene JO; Clastre M; St-Pierre B; Giglioli-Guivarc'h N; Gagneul D; Lanoue A; Courdavault V; Besseau S ACS Synth Biol; 2021 Feb; 10(2):286-296. PubMed ID: 33450150 [TBL] [Abstract][Full Text] [Related]
11. A review on Lactococcus lactis: from food to factory. Song AA; In LLA; Lim SHE; Rahim RA Microb Cell Fact; 2017 Apr; 16(1):55. PubMed ID: 28376880 [TBL] [Abstract][Full Text] [Related]
12. Expression of plant flavor genes in Lactococcus lactis. Hernández I; Molenaar D; Beekwilder J; Bouwmeester H; van Hylckama Vlieg JE Appl Environ Microbiol; 2007 Mar; 73(5):1544-52. PubMed ID: 17209074 [TBL] [Abstract][Full Text] [Related]
13. Precursor-Directed Combinatorial Biosynthesis of Cinnamoyl, Dihydrocinnamoyl, and Benzoyl Anthranilates in Saccharomyces cerevisiae. Eudes A; Teixeira Benites V; Wang G; Baidoo EE; Lee TS; Keasling JD; Loqué D PLoS One; 2015; 10(10):e0138972. PubMed ID: 26430899 [TBL] [Abstract][Full Text] [Related]
14. Stimulation of nisin production from whey by a mixed culture of Lactococcus lactis and Saccharomyces cerevisiae. Liu C; Hu B; Liu Y; Chen S Appl Biochem Biotechnol; 2006; 129-132():751-61. PubMed ID: 16915685 [TBL] [Abstract][Full Text] [Related]
15. Stimulation of Nisin production from whey by a mixed culture of Lactococcus lactis and Saccharomyces cerevisiae. Liu C; Hu B; Liu Y; Chen S Appl Biochem Biotechnol; 2006 Mar; 131(1-3):751-61. PubMed ID: 18563651 [TBL] [Abstract][Full Text] [Related]
16. Efficacy of the direct-fed microbial Enterococcus faecium alone or in combination with Saccharomyces cerevisiae or Lactococcus lactis during induced subacute ruminal acidosis. Chiquette J; Lagrost J; Girard CL; Talbot G; Li S; Plaizier JC; Hindrichsen IK J Dairy Sci; 2015 Jan; 98(1):190-203. PubMed ID: 25465534 [TBL] [Abstract][Full Text] [Related]
17. Preparation of hydroxycinnamoyl-coenzyme A thioesters using recombinant 4-coumarate:coenzyme A ligase (4CL) for characterization of BAHD hydroxycinnamoyltransferase enzyme activities. Sullivan ML Methods Enzymol; 2023; 683():3-18. PubMed ID: 37087194 [TBL] [Abstract][Full Text] [Related]
18. Expression of Lactococcus lactis NADH oxidase increases 2,3-butanediol production in Pdc-deficient Saccharomyces cerevisiae. Kim JW; Seo SO; Zhang GC; Jin YS; Seo JH Bioresour Technol; 2015 Sep; 191():512-9. PubMed ID: 25769689 [TBL] [Abstract][Full Text] [Related]
19. Establishing an Artificial Pathway for Efficient Biosynthesis of Hydroxytyrosol. Li X; Chen Z; Wu Y; Yan Y; Sun X; Yuan Q ACS Synth Biol; 2018 Feb; 7(2):647-654. PubMed ID: 29281883 [TBL] [Abstract][Full Text] [Related]
20. Characterization of plant-derived lactococci on the basis of their volatile compounds profile when grown in milk. Alemayehu D; Hannon JA; McAuliffe O; Ross RP Int J Food Microbiol; 2014 Feb; 172():57-61. PubMed ID: 24361833 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]