These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

881 related articles for article (PubMed ID: 31220358)

  • 1. A convolutional neural network for ultra-low-dose CT denoising and emphysema screening.
    Zhao T; McNitt-Gray M; Ruan D
    Med Phys; 2019 Sep; 46(9):3941-3950. PubMed ID: 31220358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultra-low-dose CT image denoising using modified BM3D scheme tailored to data statistics.
    Zhao T; Hoffman J; McNitt-Gray M; Ruan D
    Med Phys; 2019 Jan; 46(1):190-198. PubMed ID: 30351450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative evaluation of deep convolutional neural network-based image denoising for low-dose computed tomography.
    Usui K; Ogawa K; Goto M; Sakano Y; Kyougoku S; Daida H
    Vis Comput Ind Biomed Art; 2021 Jul; 4(1):21. PubMed ID: 34304321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A performance comparison of convolutional neural network-based image denoising methods: The effect of loss functions on low-dose CT images.
    Kim B; Han M; Shim H; Baek J
    Med Phys; 2019 Sep; 46(9):3906-3923. PubMed ID: 31306488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unpaired low-dose computed tomography image denoising using a progressive cyclical convolutional neural network.
    Li Q; Li R; Li S; Wang T; Cheng Y; Zhang S; Wu W; Zhao J; Qiang Y; Wang L
    Med Phys; 2024 Feb; 51(2):1289-1312. PubMed ID: 36841936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Introducing Swish and Parallelized Blind Removal Improves the Performance of a Convolutional Neural Network in Denoising MR Images.
    Sugai T; Takano K; Ouchi S; Ito S
    Magn Reson Med Sci; 2021 Dec; 20(4):410-424. PubMed ID: 33583867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Learning low-dose CT degradation from unpaired data with flow-based model.
    Liu X; Liang X; Deng L; Tan S; Xie Y
    Med Phys; 2022 Dec; 49(12):7516-7530. PubMed ID: 35880375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Denoising Tc-99m DMSA images using Denoising Convolutional Neural Network with comparison to a Block Matching Filter.
    Chaudhary J; Phulia A; Pandey AK; Sharma PD; Patel C
    Nucl Med Commun; 2023 Aug; 44(8):682-690. PubMed ID: 37272279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dose reduction and image enhancement in micro-CT using deep learning.
    Muller FM; Maebe J; Vanhove C; Vandenberghe S
    Med Phys; 2023 Sep; 50(9):5643-5656. PubMed ID: 36994779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance of a deep learning-based CT image denoising method: Generalizability over dose, reconstruction kernel, and slice thickness.
    Zeng R; Lin CY; Li Q; Jiang L; Skopec M; Fessler JA; Myers KJ
    Med Phys; 2022 Feb; 49(2):836-853. PubMed ID: 34954845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. STEDNet: Swin transformer-based encoder-decoder network for noise reduction in low-dose CT.
    Zhu L; Han Y; Xi X; Fu H; Tan S; Liu M; Yang S; Liu C; Li L; Yan B
    Med Phys; 2023 Jul; 50(7):4443-4458. PubMed ID: 36708286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probabilistic self-learning framework for low-dose CT denoising.
    Bai T; Wang B; Nguyen D; Jiang S
    Med Phys; 2021 May; 48(5):2258-2270. PubMed ID: 33621348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Incorporation of residual attention modules into two neural networks for low-dose CT denoising.
    Li M; Du Q; Duan L; Yang X; Zheng J; Jiang H; Li M
    Med Phys; 2021 Jun; 48(6):2973-2990. PubMed ID: 33890681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. X-ray CT image denoising with MINF: A modularized iterative network framework for data from multiple dose levels.
    Du Q; Tang Y; Wang J; Hou X; Wu Z; Li M; Yang X; Zheng J
    Comput Biol Med; 2023 Jan; 152():106419. PubMed ID: 36527781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reducing the risk of hallucinations with interpretable deep learning models for low-dose CT denoising: comparative performance analysis.
    Patwari M; Gutjahr R; Marcus R; Thali Y; Calvarons AF; Raupach R; Maier A
    Phys Med Biol; 2023 Oct; 68(19):. PubMed ID: 37733068
    [No Abstract]   [Full Text] [Related]  

  • 16. Two stage residual CNN for texture denoising and structure enhancement on low dose CT image.
    Huang L; Jiang H; Li S; Bai Z; Zhang J
    Comput Methods Programs Biomed; 2020 Feb; 184():105115. PubMed ID: 31627148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dilated Residual Learning With Skip Connections for Real-Time Denoising of Laser Speckle Imaging of Blood Flow in a Log-Transformed Domain.
    Cheng W; Lu J; Zhu X; Hong J; Liu X; Li M; Li P
    IEEE Trans Med Imaging; 2020 May; 39(5):1582-1593. PubMed ID: 31725373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An unsupervised two-step training framework for low-dose computed tomography denoising.
    Kim W; Lee J; Choi JH
    Med Phys; 2024 Feb; 51(2):1127-1144. PubMed ID: 37432026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unsupervised low-dose CT denoising using bidirectional contrastive network.
    Zhang Y; Zhang R; Cao R; Xu F; Jiang F; Meng J; Ma F; Guo Y; Liu J
    Comput Methods Programs Biomed; 2024 Jun; 251():108206. PubMed ID: 38723435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-supervised structural similarity-based convolutional neural network for cardiac diffusion tensor image denoising.
    Yuan N; Wang L; Ye C; Deng Z; Zhang J; Zhu Y
    Med Phys; 2023 Oct; 50(10):6137-6150. PubMed ID: 36775901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 45.