BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 31220496)

  • 21. Biosynthesis of silver nanoparticles and polyhydroxybutyrate nanocomposites of interest in antimicrobial applications.
    Castro-Mayorga JL; Freitas F; Reis MAM; Prieto MA; Lagaron JM
    Int J Biol Macromol; 2018 Mar; 108():426-435. PubMed ID: 29217186
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fabrication of multifunctional cellulose nanocrystals/poly(lactic acid) nanocomposites with silver nanoparticles by spraying method.
    Yu HY; Yang XY; Lu FF; Chen GY; Yao JM
    Carbohydr Polym; 2016 Apr; 140():209-19. PubMed ID: 26876846
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Preparation and characterization of gelatin-based nanocomposite containing chitosan nanofiber and ZnO nanoparticles.
    Amjadi S; Emaminia S; Heyat Davudian S; Pourmohammad S; Hamishehkar H; Roufegarinejad L
    Carbohydr Polym; 2019 Jul; 216():376-384. PubMed ID: 31047080
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of the antibacterial activity of Ag/Fe3O4 nanocomposites synthesized using starch.
    Ghaseminezhad SM; Shojaosadati SA
    Carbohydr Polym; 2016 Jun; 144():454-63. PubMed ID: 27083838
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Antibacterial silver nanoparticles in polyvinyl alcohol/sodium alginate blend produced by gamma irradiation.
    Eghbalifam N; Frounchi M; Dadbin S
    Int J Biol Macromol; 2015 Sep; 80():170-6. PubMed ID: 26123816
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Plasmonic nanocomposites: polymer-guided strategies for assembling metal nanoparticles.
    Gao B; Rozin MJ; Tao AR
    Nanoscale; 2013 Jul; 5(13):5677-91. PubMed ID: 23703218
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Surface modification of cotton fabrics for antibacterial application by coating with AgNPs-alginate composite.
    Zahran MK; Ahmed HB; El-Rafie MH
    Carbohydr Polym; 2014 Aug; 108():145-52. PubMed ID: 24751258
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In situ synthesis of bacterial cellulose/copper nanoparticles composite membranes with long-term antibacterial property.
    He W; Huang X; Zheng Y; Sun Y; Xie Y; Wang Y; Yue L
    J Biomater Sci Polym Ed; 2018 Dec; 29(17):2137-2153. PubMed ID: 30280964
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Antibacterial activity of optically transparent nanocomposite films based on chitosan or its derivatives and silver nanoparticles.
    Pinto RJ; Fernandes SC; Freire CS; Sadocco P; Causio J; Neto CP; Trindade T
    Carbohydr Res; 2012 Feb; 348():77-83. PubMed ID: 22154478
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functional nanonetwork-structured polymers and carbons with silver nanoparticle yolks for antibacterial application.
    Lin Y; Xiong K; Lu Z; Liu S; Zhang Z; Lu Y; Fu R; Wu D
    Chem Commun (Camb); 2017 Aug; 53(70):9777-9780. PubMed ID: 28816302
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced of antibacterial activity of antibiotic-functionalized silver nanocomposites with good biocompatibility.
    Guo Q; Lan T; Chen Y; Xu Y; Peng J; Tao L; Shen X
    J Mater Sci Mater Med; 2019 Mar; 30(3):34. PubMed ID: 30840138
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cellulose nanocomposite films with in situ generated silver nanoparticles using Cassia alata leaf extract as a reducing agent.
    Sivaranjana P; Nagarajan ER; Rajini N; Jawaid M; Rajulu AV
    Int J Biol Macromol; 2017 Jun; 99():223-232. PubMed ID: 28237574
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preparation and properties of cellulose nanocomposite films with in situ generated copper nanoparticles using Terminalia catappa leaf extract.
    Muthulakshmi L; Rajini N; Nellaiah H; Kathiresan T; Jawaid M; Rajulu AV
    Int J Biol Macromol; 2017 Feb; 95():1064-1071. PubMed ID: 27984140
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Aqueous synthesis of silver nanoparticle embedded cationic polymer nanofibers and their antibacterial activity.
    Song J; Kang H; Lee C; Hwang SH; Jang J
    ACS Appl Mater Interfaces; 2012 Jan; 4(1):460-5. PubMed ID: 22181053
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nano-biocomposite films with modified cellulose nanocrystals and synthesized silver nanoparticles.
    Fortunati E; Rinaldi S; Peltzer M; Bloise N; Visai L; Armentano I; Jiménez A; Latterini L; Kenny JM
    Carbohydr Polym; 2014 Jan; 101():1122-33. PubMed ID: 24299883
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Starch-based polyurethane/CuO nanocomposite foam: Antibacterial effects for infection control.
    Ashjari HR; Dorraji MSS; Fakhrzadeh V; Eslami H; Rasoulifard MH; Rastgouy-Houjaghan M; Gholizadeh P; Kafil HS
    Int J Biol Macromol; 2018 May; 111():1076-1082. PubMed ID: 29366900
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Antibacterial electrospun chitosan-polyethylene oxide nanocomposite mats containing bioactive silver nanoparticles.
    Kohsari I; Shariatinia Z; Pourmortazavi SM
    Carbohydr Polym; 2016 Apr; 140():287-98. PubMed ID: 26876856
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of antibacterial activity of nanostructured poly(1-naphthylamine) and its composites.
    Riaz U; Khan S; Islam MN; Ahmad S; Ashraf SM
    J Biomater Sci Polym Ed; 2008; 19(11):1535-46. PubMed ID: 18973728
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simultaneous improvements in antibacterial and flame retardant properties of PET by use of bio-nanotechnology for fabrication of high performance PET bionanocomposites.
    Hatami M; Sharifi A; Karimi-Maleh H; Agheli H; Karaman C
    Environ Res; 2022 Apr; 206():112281. PubMed ID: 34715095
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Silver nanoparticles decorated lipase-sensitive polyurethane micelles for on-demand release of silver nanoparticles.
    Su Y; Zhao L; Meng F; Wang Q; Yao Y; Luo J
    Colloids Surf B Biointerfaces; 2017 Apr; 152():238-244. PubMed ID: 28113126
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.