BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 31220563)

  • 1. Sleep and body temperature in TNFα knockout mice: The effects of sleep deprivation, β3-AR stimulation and exogenous TNFα.
    Szentirmai É; Kapás L
    Brain Behav Immun; 2019 Oct; 81():260-271. PubMed ID: 31220563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sleep-wake behavior and responses to sleep deprivation of mice lacking both interleukin-1 beta receptor 1 and tumor necrosis factor-alpha receptor 1.
    Baracchi F; Opp MR
    Brain Behav Immun; 2008 Aug; 22(6):982-93. PubMed ID: 18329246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spontaneous sleep and homeostatic sleep regulation in ghrelin knockout mice.
    Szentirmai E; Kapás L; Sun Y; Smith RG; Krueger JM
    Am J Physiol Regul Integr Comp Physiol; 2007 Jul; 293(1):R510-7. PubMed ID: 17409264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Restricted feeding-induced sleep, activity, and body temperature changes in normal and preproghrelin-deficient mice.
    Szentirmai E; Kapás L; Sun Y; Smith RG; Krueger JM
    Am J Physiol Regul Integr Comp Physiol; 2010 Feb; 298(2):R467-77. PubMed ID: 19939974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of the brown adipose tissue in β3-adrenergic receptor activation-induced sleep, metabolic and feeding responses.
    Szentirmai É; Kapás L
    Sci Rep; 2017 Apr; 7(1):958. PubMed ID: 28424466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple sleep alterations in mice lacking cannabinoid type 1 receptors.
    Silvani A; Berteotti C; Bastianini S; Lo Martire V; Mazza R; Pagotto U; Quarta C; Zoccoli G
    PLoS One; 2014; 9(2):e89432. PubMed ID: 24586776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective and total sleep deprivation: effect on the sleep EEG in the rat.
    Endo T; Schwierin B; Borbély AA; Tobler I
    Psychiatry Res; 1997 Feb; 66(2-3):97-110. PubMed ID: 9075274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diurnal variation of lipopolysaccharide-induced alterations in sleep and body temperature of interleukin-6-deficient mice.
    Morrow JD; Opp MR
    Brain Behav Immun; 2005 Jan; 19(1):40-51. PubMed ID: 15581737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spontaneous and influenza virus-induced sleep are altered in TNF-alpha double-receptor deficient mice.
    Kapás L; Bohnet SG; Traynor TR; Majde JA; Szentirmai E; Magrath P; Taishi P; Krueger JM
    J Appl Physiol (1985); 2008 Oct; 105(4):1187-98. PubMed ID: 18687977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Promotion of sleep by heat in young rats.
    Obál F; Alföldi P; Rubicsek G
    Pflugers Arch; 1995 Sep; 430(5):729-38. PubMed ID: 7478925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sleep-wake behavior and responses of interleukin-6-deficient mice to sleep deprivation.
    Morrow JD; Opp MR
    Brain Behav Immun; 2005 Jan; 19(1):28-39. PubMed ID: 15581736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beta2-containing nicotinic receptors contribute to the organization of sleep and regulate putative micro-arousals in mice.
    Léna C; Popa D; Grailhe R; Escourrou P; Changeux JP; Adrien J
    J Neurosci; 2004 Jun; 24(25):5711-8. PubMed ID: 15215293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deficiency of corticotropin-releasing hormone type-2 receptor alters sleep responses to bacterial lipopolysaccharide in mice.
    Jakubcakova V; Flachskamm C; Deussing JM; Kimura M
    Brain Behav Immun; 2011 Nov; 25(8):1626-36. PubMed ID: 21704697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EphA4 is Involved in Sleep Regulation but Not in the Electrophysiological Response to Sleep Deprivation.
    Freyburger M; Pierre A; Paquette G; Bélanger-Nelson E; Bedont J; Gaudreault PO; Drolet G; Laforest S; Blackshaw S; Cermakian N; Doucet G; Mongrain V
    Sleep; 2016 Mar; 39(3):613-24. PubMed ID: 26612390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sleep, activity, temperature and arousal responses of mice deficient for muscarinic receptor M2 or M4.
    Turner J; Hughes LF; Toth LA
    Life Sci; 2010 Jan; 86(5-6):158-69. PubMed ID: 19958780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interleukin-1 receptor accessory proteins are required for normal homeostatic responses to sleep deprivation.
    Nguyen J; Gibbons CM; Dykstra-Aiello C; Ellingsen R; Koh KMS; Taishi P; Krueger JM
    J Appl Physiol (1985); 2019 Sep; 127(3):770-780. PubMed ID: 31295066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Challenging sleep homeostasis in narcolepsy-cataplexy: implications for non-REM and REM sleep regulation.
    Khatami R; Landolt HP; Achermann P; Adam M; Rétey JV; Werth E; Schmid D; Bassetti CL
    Sleep; 2008 Jun; 31(6):859-67. PubMed ID: 18548831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Counterpointing the functional role of the forebrain and of the brainstem in the control of the sleep-waking system.
    Villablanca JR
    J Sleep Res; 2004 Sep; 13(3):179-208. PubMed ID: 15339255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intact brown adipose tissue thermogenesis is required for restorative sleep responses after sleep loss.
    Szentirmai É; Kapás L
    Eur J Neurosci; 2014 Mar; 39(6):984-998. PubMed ID: 24372950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sleep regulation in rats: effects of sleep deprivation, light, and circadian phase.
    Trachsel L; Tobler I; Borbély AA
    Am J Physiol; 1986 Dec; 251(6 Pt 2):R1037-44. PubMed ID: 3789191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.