BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 31220667)

  • 1. Potential chemical transformation of phosphinic acid derivatives and their applications in the synthesis of drugs.
    Abdou MM; El-Saeed RA
    Bioorg Chem; 2019 Sep; 90():103039. PubMed ID: 31220667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enantioselective synthesis of H-phosphinic acids bearing natural amino acid residues.
    Yao Q; Yuan C
    J Org Chem; 2013 Jul; 78(14):6962-74. PubMed ID: 23772951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of p-aminophenyl aryl H-phosphinic acids and esters via cross-coupling reactions: elaboration to phosphinic acid pseudopeptide analogues of pteroyl glutamic acid and related antifolates.
    Yang Y; Coward JK
    J Org Chem; 2007 Jul; 72(15):5748-58. PubMed ID: 17602593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stereoselective Synthesis of α-Amino-C-phosphinic Acids and Derivatives.
    Viveros-Ceballos JL; Ordóñez M; Sayago FJ; Cativiela C
    Molecules; 2016 Aug; 21(9):. PubMed ID: 27589703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymer-Supported Phosphoric, Phosphonic and Phosphinic Acids-From Synthesis to Properties and Applications in Separation Processes.
    Głowińska A; Trochimczuk AW
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32942756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Practical Synthesis of Phosphinic Dipeptides by Tandem Esterification of Aminophosphinic and Acrylic Acids under Silylating Conditions.
    Kokkala P; Voreakos K; Lelis A; Patiniotis K; Skoulikas N; Devel L; Ziotopoulou A; Kaloumenou E; Georgiadis D
    Molecules; 2022 Feb; 27(4):. PubMed ID: 35209031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and modifications of phosphinic dipeptide analogues.
    Mucha A
    Molecules; 2012 Nov; 17(11):13530-68. PubMed ID: 23154272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stereoselective synthesis of alpha-amino(phenyl)methyl(phenyl)phosphinic acids with O-pivaloylated D-galactosylamine as chiral auxiliary.
    Wang Y; Wang Y; Yu J; Miao Z; Chen R
    Chemistry; 2009 Sep; 15(37):9290-3. PubMed ID: 19658141
    [No Abstract]   [Full Text] [Related]  

  • 9. Synthesis of phosphinopeptides via the Mannich ligation.
    Li B; Cai S; Du DM; Xu J
    Org Lett; 2007 Jun; 9(12):2257-60. PubMed ID: 17497867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active methylene phosphinic peptides: a new diversification approach.
    Matziari M; Nasopoulou M; Yiotakis A
    Org Lett; 2006 May; 8(11):2317-9. PubMed ID: 16706515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel method for the separation of bis(alpha-hydroxyalkyl)phosphinic acid diastereoisomers via formation of novel cyclic phosphinic acids.
    Kaboudin B; Haghighat H; Yokomatsu T
    J Org Chem; 2006 Aug; 71(17):6604-6. PubMed ID: 16901151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diastereoselective synthesis of alpha,beta'-disubstituted aminomethyl(2-carboxyethyl)phosphinates as phosphinyl dipeptide isosteres.
    Yamagishi T; Ichikawa H; Haruki T; Yokomatsu T
    Org Lett; 2008 Oct; 10(19):4347-50. PubMed ID: 18781768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Late-Stage Diversification of Phosphinic Dehydroalanine Pseudopeptides Based on a Giese-Type Radical C-Alkylation Strategy.
    Voreakos K; Devel L; Georgiadis D
    Org Lett; 2019 Jun; 21(12):4397-4401. PubMed ID: 30933530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retention of configuration on the oxidative addition of P-H bond to platinum (0) complexes: the first straightforward synthesis of enantiomerically pure P-chiral alkenylphosphinates via palladium-catalyzed stereospecific hydrophosphinylation of alkynes.
    Han LB; Zhao CQ; Onozawa Sy SY; Goto M; Tanaka M
    J Am Chem Soc; 2002 Apr; 124(15):3842-3. PubMed ID: 11942816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A synthetic study of chiral α-hydroxy-H-phosphinates based on proline catalysis.
    Yao Q; Yuan C
    Chemistry; 2013 May; 19(19):6080-8. PubMed ID: 23471759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of α-carboxyphosphinopeptides derived from norleucine.
    Pícha J; Buděšínský M; Fiedler P; Sanda M; Jiráček J
    Amino Acids; 2010 Nov; 39(5):1265-80. PubMed ID: 20349321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of (phosphonomethyl)phosphinate pyrophosphate analogues via the phospha-Claisen condensation.
    Gelat F; Lacomme C; Berger O; Gavara L; Montchamp JL
    Org Biomol Chem; 2015 Jan; 13(3):825-33. PubMed ID: 25407406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A versatile annulation protocol toward novel constrained phosphinic peptidomimetics.
    Nasopoulou M; Georgiadis D; Matziari M; Dive V; Yiotakis A
    J Org Chem; 2007 Sep; 72(19):7222-8. PubMed ID: 17715974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of phosphonamidate peptides by Staudinger reactions of silylated phosphinic acids and esters.
    Wilkening I; del Signore G; Hackenberger CP
    Chem Commun (Camb); 2011 Jan; 47(1):349-51. PubMed ID: 20830364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A modular rearrangement approach toward medicinally relevant phosphinic structures.
    Rogakos V; Georgiadis D; Dive V; Yiotakis A
    Org Lett; 2009 Oct; 11(20):4696-9. PubMed ID: 19775105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.