These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 31220768)
21. Acetaldehyde removal and increased H Kim KH; Farooq A; Song MY; Jung SC; Jeon KJ; Song J; Ko CH; Jae J; Park YK J Environ Manage; 2019 Feb; 232():330-335. PubMed ID: 30496962 [TBL] [Abstract][Full Text] [Related]
22. Ni Zhao X; Yang Y; Xu J; Guo Y; Zhou J; Wang X ACS Omega; 2022 Apr; 7(15):13134-13143. PubMed ID: 35474806 [TBL] [Abstract][Full Text] [Related]
23. Production of Aromatic Compounds by Catalytic Depolymerization of Technical and Downstream Biorefinery Lignins. Cornejo A; Bimbela F; Moreira R; Hablich K; García-Yoldi Í; Maisterra M; Portugal A; Gandía LM; Martínez-Merino V Biomolecules; 2020 Sep; 10(9):. PubMed ID: 32962141 [TBL] [Abstract][Full Text] [Related]
25. Production of vanillin via oxidation depolymerization of lignin over Fe- and Mn-modified TS-1 zeolites. Wan Z; Zhang H; Niu M; Guo Y; Li H Int J Biol Macromol; 2024 Jun; 272(Pt 1):132922. PubMed ID: 38844292 [TBL] [Abstract][Full Text] [Related]
26. Advances in Heterogeneous Catalysts for Lignin Hydrogenolysis. Shen Z; Shi C; Liu F; Wang W; Ai M; Huang Z; Zhang X; Pan L; Zou JJ Adv Sci (Weinh); 2024 Jan; 11(1):e2306693. PubMed ID: 37964410 [TBL] [Abstract][Full Text] [Related]
27. Effective depolymerization of concentrated acid hydrolysis lignin using a carbon-supported ruthenium catalyst in ethanol/formic acid media. Kristianto I; Limarta SO; Lee H; Ha JM; Suh DJ; Jae J Bioresour Technol; 2017 Jun; 234():424-431. PubMed ID: 28347962 [TBL] [Abstract][Full Text] [Related]
28. Effect of cobalt on titania, ceria and zirconia oxide supported catalysts on the oxidative depolymerization of prot and alkali lignin. Kumar A; Biswas B; Bhaskar T Bioresour Technol; 2020 Mar; 299():122589. PubMed ID: 31865149 [TBL] [Abstract][Full Text] [Related]
29. Synergy in Lignin Upgrading by a Combination of Cu-Based Mixed Oxide and Ni-Phosphide Catalysts in Supercritical Ethanol. Korányi TI; Huang X; Coumans AE; Hensen EJ ACS Sustain Chem Eng; 2017 Apr; 5(4):3535-3543. PubMed ID: 28405528 [TBL] [Abstract][Full Text] [Related]
30. Solvent effects on the hydrogenolysis of diphenyl ether with Raney nickel and their implications for the conversion of lignin. Wang X; Rinaldi R ChemSusChem; 2012 Aug; 5(8):1455-66. PubMed ID: 22549827 [TBL] [Abstract][Full Text] [Related]
31. Catalytic conversion of enzymatic hydrolysis lignin into cycloalkanes over a gamma-alumina supported nickel molybdenum alloy catalyst. Liu Q; Bai Y; Chen H; Chen M; Sang Y; Wu K; Ma Z; Ma Y; Li Y Bioresour Technol; 2021 Mar; 323():124634. PubMed ID: 33422792 [TBL] [Abstract][Full Text] [Related]
32. Effect of methanol in controlling defunctionalization of the propyl side chain of phenolics from catalytic upstream biorefining. Ferrini P; Chesi C; Parkin N; Rinaldi R Faraday Discuss; 2017 Sep; 202():403-413. PubMed ID: 28660970 [TBL] [Abstract][Full Text] [Related]
33. Tandem Hydrogenolysis-Hydrogenation of Lignin-Derived Oxygenates over Integrated Dual Catalysts with Optimized Interoperations. Fang H; Chen W; Li S; Li X; Duan X; Ye L; Yuan Y ChemSusChem; 2019 Dec; 12(23):5199-5206. PubMed ID: 31647183 [TBL] [Abstract][Full Text] [Related]
34. Sustainable depolymerization of lignin into aromatic compounds using amphiphilic Anderson-type polyoxometalate catalysts. Wei N; Xu W; Li S; Shi J Int J Biol Macromol; 2024 Oct; 277(Pt 2):133257. PubMed ID: 38908616 [TBL] [Abstract][Full Text] [Related]
35. Carbon Microsphere-Supported Metallic Nickel Nanoparticles as Novel Heterogeneous Catalysts and Their Application for the Reduction of Nitrophenol. Krebsz M; Kótai L; Sajó IE; Váczi T; Pasinszki T Molecules; 2021 Sep; 26(18):. PubMed ID: 34577151 [TBL] [Abstract][Full Text] [Related]
36. Hydrotreatment of Kraft Lignin to Alkylphenolics and Aromatics Using Ni, Mo, and W Phosphides Supported on Activated Carbon. Chowdari RK; Agarwal S; Heeres HJ ACS Sustain Chem Eng; 2019 Jan; 7(2):2044-2055. PubMed ID: 30775190 [TBL] [Abstract][Full Text] [Related]
37. Catalytic hydrothermal liquefaction of alkali lignin for monophenols production over homologous biochar-supported copper catalysts in water. Zhang J; Ge Y; Li Z Int J Biol Macromol; 2023 Dec; 253(Pt 1):126656. PubMed ID: 37660845 [TBL] [Abstract][Full Text] [Related]
38. Fabrication and application of amphiphilic polyoxometalate catalyst (CTA) Wang X; Zhang D; Li X; Xu W; Shi J Int J Biol Macromol; 2023 Jul; 242(Pt 2):124970. PubMed ID: 37210062 [TBL] [Abstract][Full Text] [Related]
39. Titanium nitride-nickel nanocomposite as heterogeneous catalyst for the hydrogenolysis of aryl ethers. Molinari V; Giordano C; Antonietti M; Esposito D J Am Chem Soc; 2014 Feb; 136(5):1758-61. PubMed ID: 24437507 [TBL] [Abstract][Full Text] [Related]
40. Lignin-First Depolymerization of Lignocellulose into Monophenols over Carbon Nanotube-Supported Ruthenium: Impact of Lignin Sources. Su S; Xiao LP; Chen X; Wang S; Chen XH; Guo Y; Zhai SR ChemSusChem; 2022 Jun; 15(12):e202200365. PubMed ID: 35438245 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]