These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 31220824)
1. 3D printed coaxial nozzles for the extrusion of hydrogel tubes toward modeling vascular endothelium. Millik SC; Dostie AM; Karis DG; Smith PT; McKenna M; Chan N; Curtis CD; Nance E; Theberge AB; Nelson A Biofabrication; 2019 Jul; 11(4):045009. PubMed ID: 31220824 [TBL] [Abstract][Full Text] [Related]
2. A 4D printed nanoengineered super bioactive hydrogel scaffold with programmable deformation for potential bifurcated vascular channel construction. Nain A; Joshi A; Debnath S; Choudhury S; Thomas J; Satija J; Huang CC; Chatterjee K J Mater Chem B; 2024 Aug; 12(31):7604-7617. PubMed ID: 38984474 [TBL] [Abstract][Full Text] [Related]
3. 3D printing of self-standing and vascular supportive multimaterial hydrogel structures for organ engineering. Liu S; Hu Q; Shen Z; Krishnan S; Zhang H; Ramalingam M Biotechnol Bioeng; 2022 Jan; 119(1):118-133. PubMed ID: 34617587 [TBL] [Abstract][Full Text] [Related]
4. Synergistic interplay between human MSCs and HUVECs in 3D spheroids laden in collagen/fibrin hydrogels for bone tissue engineering. Heo DN; Hospodiuk M; Ozbolat IT Acta Biomater; 2019 Sep; 95():348-356. PubMed ID: 30831326 [TBL] [Abstract][Full Text] [Related]
5. Dual-core coaxial bioprinting of double-channel constructs with a potential for perfusion and interaction of cells. Yu Y; Xie R; He Y; Zhao F; Zhang Q; Wang W; Zhang Y; Hu J; Luo D; Peng W Biofabrication; 2022 May; 14(3):. PubMed ID: 35616388 [TBL] [Abstract][Full Text] [Related]
6. Fabrication and characterization of gels with integrated channels using 3D printing with microfluidic nozzle for tissue engineering applications. Attalla R; Ling C; Selvaganapathy P Biomed Microdevices; 2016 Feb; 18(1):17. PubMed ID: 26842949 [TBL] [Abstract][Full Text] [Related]
7. Coaxial Cell Printing of Freestanding, Perfusable, and Functional In Vitro Vascular Models for Recapitulation of Native Vascular Endothelium Pathophysiology. Gao G; Park JY; Kim BS; Jang J; Cho DW Adv Healthc Mater; 2018 Dec; 7(23):e1801102. PubMed ID: 30370670 [TBL] [Abstract][Full Text] [Related]
9. Stereolithographic hydrogel printing of 3D culture chips with biofunctionalized complex 3D perfusion networks. Zhang R; Larsen NB Lab Chip; 2017 Dec; 17(24):4273-4282. PubMed ID: 29116271 [TBL] [Abstract][Full Text] [Related]
10. Assessment of hydrogels for bioprinting of endothelial cells. Benning L; Gutzweiler L; Tröndle K; Riba J; Zengerle R; Koltay P; Zimmermann S; Stark GB; Finkenzeller G J Biomed Mater Res A; 2018 Apr; 106(4):935-947. PubMed ID: 29119674 [TBL] [Abstract][Full Text] [Related]
11. Nitric oxide-releasing vascular grafts: A therapeutic strategy to promote angiogenic activity and endothelium regeneration. Kabirian F; Brouki Milan P; Zamanian A; Heying R; Mozafari M Acta Biomater; 2019 Jul; 92():82-91. PubMed ID: 31059835 [TBL] [Abstract][Full Text] [Related]
12. Multi-directional cellular alignment in 3D guided by electrohydrodynamically-printed microlattices. Mao M; He J; Li Z; Han K; Li D Acta Biomater; 2020 Jan; 101():141-151. PubMed ID: 31669696 [TBL] [Abstract][Full Text] [Related]
13. Microfluidic Coaxial Bioprinting of Hollow, Standalone, and Perfusable Vascular Conduits. Maharjan S; He JJ; Lv L; Wang D; Zhang YS Methods Mol Biol; 2022; 2375():61-75. PubMed ID: 34591299 [TBL] [Abstract][Full Text] [Related]
15. GelMA-collagen blends enable drop-on-demand 3D printablility and promote angiogenesis. Stratesteffen H; Köpf M; Kreimendahl F; Blaeser A; Jockenhoevel S; Fischer H Biofabrication; 2017 Sep; 9(4):045002. PubMed ID: 28795951 [TBL] [Abstract][Full Text] [Related]
16. 3D Printing of Vascular Tubes Using Bioelastomer Prepolymers by Freeform Reversible Embedding. Savoji H; Davenport Huyer L; Mohammadi MH; Lun Lai BF; Rafatian N; Bannerman D; Shoaib M; Bobicki ER; Ramachandran A; Radisic M ACS Biomater Sci Eng; 2020 Mar; 6(3):1333-1343. PubMed ID: 33455372 [TBL] [Abstract][Full Text] [Related]
17. 3D bioprinting of complex channels within cell-laden hydrogels. Ji S; Almeida E; Guvendiren M Acta Biomater; 2019 Sep; 95():214-224. PubMed ID: 30831327 [TBL] [Abstract][Full Text] [Related]
18. Coaxial Electrohydrodynamic Bioprinting of Pre-vascularized Cell-laden Constructs for Tissue Engineering. Mao M; Liang H; He J; Kasimu A; Zhang Y; Wang L; Li X; Li D Int J Bioprint; 2021; 7(3):362. PubMed ID: 34286149 [TBL] [Abstract][Full Text] [Related]
19. Enhanced wound healing using a 3D printed VEGF-mimicking peptide incorporated hydrogel patch in a pig model. Jang MJ; Bae SK; Jung YS; Kim JC; Kim JS; Park SK; Suh JS; Yi SJ; Ahn SH; Lim JO Biomed Mater; 2021 Apr; 16(4):. PubMed ID: 33761488 [TBL] [Abstract][Full Text] [Related]
20. Development of osteon-like scaffold-cell construct by quadruple coaxial extrusion-based 3D bioprinting of nanocomposite hydrogel. Ghahri T; Salehi Z; Aghajanpour S; Eslaminejad MB; Kalantari N; Akrami M; Dinarvand R; Jang HL; Esfandyari-Manesh M Biomater Adv; 2023 Feb; 145():213254. PubMed ID: 36584583 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]