BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 31220860)

  • 1. Many Options, Few Solutions: Over 60 My Snakes Converged on a Few Optimal Venom Formulations.
    Barua A; Mikheyev AS
    Mol Biol Evol; 2019 Sep; 36(9):1964-1974. PubMed ID: 31220860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of an arsenal: structural and functional diversification of the venom system in the advanced snakes (Caenophidia).
    Fry BG; Scheib H; van der Weerd L; Young B; McNaughtan J; Ramjan SF; Vidal N; Poelmann RE; Norman JA
    Mol Cell Proteomics; 2008 Feb; 7(2):215-46. PubMed ID: 17855442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The venom-gland transcriptome of the eastern coral snake (Micrurus fulvius) reveals high venom complexity in the intragenomic evolution of venoms.
    Margres MJ; Aronow K; Loyacano J; Rokyta DR
    BMC Genomics; 2013 Aug; 14():531. PubMed ID: 23915248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contextual Constraints: Dynamic Evolution of Snake Venom Phospholipase A
    Suranse V; Jackson TNW; Sunagar K
    Toxins (Basel); 2022 Jun; 14(6):. PubMed ID: 35737081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Independent Recruitment of Different Types of Phospholipases A2 to the Venoms of Caenophidian Snakes: The Rise of PLA2-IIE within Pseudoboini (Dipsadidae).
    Bayona-Serrano JD; Grazziotin FG; Salazar-Valenzuela D; Valente RH; Nachtigall PG; Colombini M; Moura-da-Silva A; Junqueira-de-Azevedo ILM
    Mol Biol Evol; 2023 Jul; 40(7):. PubMed ID: 37352150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The venom-gland transcriptome of the eastern diamondback rattlesnake (Crotalus adamanteus).
    Rokyta DR; Lemmon AR; Margres MJ; Aronow K
    BMC Genomics; 2012 Jul; 13():312. PubMed ID: 23025625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Snake venoms are integrated systems, but abundant venom proteins evolve more rapidly.
    Aird SD; Aggarwal S; Villar-Briones A; Tin MM; Terada K; Mikheyev AS
    BMC Genomics; 2015 Aug; 16():647. PubMed ID: 26315097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression pattern of three-finger toxin and phospholipase A2 genes in the venom glands of two sea snakes, Lapemis curtus and Acalyptophis peronii: comparison of evolution of these toxins in land snakes, sea kraits and sea snakes.
    Pahari S; Bickford D; Fry BG; Kini RM
    BMC Evol Biol; 2007 Sep; 7():175. PubMed ID: 17900344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The origin and diversification of a novel protein family in venomous snakes.
    Giorgianni MW; Dowell NL; Griffin S; Kassner VA; Selegue JE; Carroll SB
    Proc Natl Acad Sci U S A; 2020 May; 117(20):10911-10920. PubMed ID: 32366667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Domain loss facilitates accelerated evolution and neofunctionalization of duplicate snake venom metalloproteinase toxin genes.
    Casewell NR; Wagstaff SC; Harrison RA; Renjifo C; Wüster W
    Mol Biol Evol; 2011 Sep; 28(9):2637-49. PubMed ID: 21478373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel transcripts in the maxillary venom glands of advanced snakes.
    Fry BG; Scheib H; de L M Junqueira de Azevedo I; Silva DA; Casewell NR
    Toxicon; 2012 Jun; 59(7-8):696-708. PubMed ID: 22465490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Restriction and recruitment-gene duplication and the origin and evolution of snake venom toxins.
    Hargreaves AD; Swain MT; Hegarty MJ; Logan DW; Mulley JF
    Genome Biol Evol; 2014 Aug; 6(8):2088-95. PubMed ID: 25079342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phylogenetically diverse diets favor more complex venoms in North American pitvipers.
    Holding ML; Strickland JL; Rautsaw RM; Hofmann EP; Mason AJ; Hogan MP; Nystrom GS; Ellsworth SA; Colston TJ; Borja M; Castañeda-Gaytán G; Grünwald CI; Jones JM; Freitas-de-Sousa LA; Viala VL; Margres MJ; Hingst-Zaher E; Junqueira-de-Azevedo ILM; Moura-da-Silva AM; Grazziotin FG; Gibbs HL; Rokyta DR; Parkinson CL
    Proc Natl Acad Sci U S A; 2021 Apr; 118(17):. PubMed ID: 33875585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytogenetics and molecular data in snakes: a phylogenetic approach.
    Oguiura N; Ferrarezzi H; Batistic RF
    Cytogenet Genome Res; 2009; 127(2-4):128-42. PubMed ID: 20215738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toxin expression in snake venom evolves rapidly with constant shifts in evolutionary rates.
    Barua A; Mikheyev AS
    Proc Biol Sci; 2020 May; 287(1926):20200613. PubMed ID: 32345154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From genome to "venome": molecular origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences and related body proteins.
    Fry BG
    Genome Res; 2005 Mar; 15(3):403-20. PubMed ID: 15741511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Venom gland transcriptomics for identifying, cataloging, and characterizing venom proteins in snakes.
    Brahma RK; McCleary RJ; Kini RM; Doley R
    Toxicon; 2015 Jan; 93():1-10. PubMed ID: 25448392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and molecular characterization of five putative toxins from the venom gland of the snake Philodryas chamissonis (Serpentes: Dipsadidae).
    Urra FA; Pulgar R; Gutiérrez R; Hodar C; Cambiazo V; Labra A
    Toxicon; 2015 Dec; 108():19-31. PubMed ID: 26410112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Receptor variability-driven evolution of snake toxins.
    Ji XH; Zhang SF; Gao B; Zhu SY
    Zool Res; 2018 Nov; 39(6):431-436. PubMed ID: 30084433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coevolution of Snake Venom Toxic Activities and Diet: Evidence that Ecological Generalism Favours Toxicological Diversity.
    Davies EL; Arbuckle K
    Toxins (Basel); 2019 Dec; 11(12):. PubMed ID: 31817769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.