BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

382 related articles for article (PubMed ID: 31221197)

  • 1. Machine learning techniques for personalized breast cancer risk prediction: comparison with the BCRAT and BOADICEA models.
    Ming C; Viassolo V; Probst-Hensch N; Chappuis PO; Dinov ID; Katapodi MC
    Breast Cancer Res; 2019 Jun; 21(1):75. PubMed ID: 31221197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 10-year performance of four models of breast cancer risk: a validation study.
    Terry MB; Liao Y; Whittemore AS; Leoce N; Buchsbaum R; Zeinomar N; Dite GS; Chung WK; Knight JA; Southey MC; Milne RL; Goldgar D; Giles GG; McLachlan SA; Friedlander ML; Weideman PC; Glendon G; Nesci S; Andrulis IL; John EM; Phillips KA; Daly MB; Buys SS; Hopper JL; MacInnis RJ
    Lancet Oncol; 2019 Apr; 20(4):504-517. PubMed ID: 30799262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning-based lifetime breast cancer risk reclassification compared with the BOADICEA model: impact on screening recommendations.
    Ming C; Viassolo V; Probst-Hensch N; Dinov ID; Chappuis PO; Katapodi MC
    Br J Cancer; 2020 Sep; 123(5):860-867. PubMed ID: 32565540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting breast cancer risk using personal health data and machine learning models.
    Stark GF; Hart GR; Nartowt BJ; Deng J
    PLoS One; 2019; 14(12):e0226765. PubMed ID: 31881042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative validation of the BOADICEA and Tyrer-Cuzick breast cancer risk models incorporating classical risk factors and polygenic risk in a population-based prospective cohort of women of European ancestry.
    Pal Choudhury P; Brook MN; Hurson AN; Lee A; Mulder CV; Coulson P; Schoemaker MJ; Jones ME; Swerdlow AJ; Chatterjee N; Antoniou AC; Garcia-Closas M
    Breast Cancer Res; 2021 Feb; 23(1):22. PubMed ID: 33588869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validating the IBIS and BOADICEA Models for Predicting Breast Cancer Risk in the Iranian Population.
    Ghoncheh M; Ziaee F; Karami M; Poorolajal J
    Clin Breast Cancer; 2017 Jun; 17(3):e113-e118. PubMed ID: 28216418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning models in breast cancer survival prediction.
    Montazeri M; Montazeri M; Montazeri M; Beigzadeh A
    Technol Health Care; 2016; 24(1):31-42. PubMed ID: 26409558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Practical problems with clinical guidelines for breast cancer prevention based on remaining lifetime risk.
    Quante AS; Whittemore AS; Shriver T; Hopper JL; Strauch K; Terry MB
    J Natl Cancer Inst; 2015 Jul; 107(7):. PubMed ID: 25956172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BRCA1 and BRCA2 mutation predictions using the BOADICEA and BRCAPRO models and penetrance estimation in high-risk French-Canadian families.
    Antoniou AC; Durocher F; Smith P; Simard J; Easton DF;
    Breast Cancer Res; 2006; 8(1):R3. PubMed ID: 16417652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation of breast cancer risk assessment tools on a French-Canadian population-based cohort.
    Jantzen R; Payette Y; de Malliard T; Labbé C; Noisel N; Broët P
    BMJ Open; 2021 Apr; 11(4):e045078. PubMed ID: 33846154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation of a genetic risk score for Arkansas women of color.
    Starlard-Davenport A; Allman R; Dite GS; Hopper JL; Spaeth Tuff E; Macleod S; Kadlubar S; Preston M; Henry-Tillman R
    PLoS One; 2018; 13(10):e0204834. PubMed ID: 30281645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New Machine Learning Applications to Accelerate Personalized Medicine in Breast Cancer: Rise of the Support Vector Machines.
    Ozer ME; Sarica PO; Arga KY
    OMICS; 2020 May; 24(5):241-246. PubMed ID: 32228365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Breast cancer risk prediction accuracy in Jewish Israeli high-risk women using the BOADICEA and IBIS risk models.
    Laitman Y; Simeonov M; Keinan-Boker L; Liphshitz I; Friedman E
    Genet Res (Camb); 2013 Dec; 95(6):174-7. PubMed ID: 24506973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating the performance of National Comprehensive Cancer Network (NCCN) breast and ovarian genetic/familial high risk assessment referral criteria for breast cancer women in an Asian surgical breast clinic.
    Lim GH; Borje E; Allen JC
    Gland Surg; 2017 Feb; 6(1):35-42. PubMed ID: 28210550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prospective validation of the BOADICEA multifactorial breast cancer risk prediction model in a large prospective cohort study.
    Yang X; Eriksson M; Czene K; Lee A; Leslie G; Lush M; Wang J; Dennis J; Dorling L; Carvalho S; Mavaddat N; Simard J; Schmidt MK; Easton DF; Hall P; Antoniou AC
    J Med Genet; 2022 Dec; 59(12):1196-1205. PubMed ID: 36162852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prospective validation of the breast cancer risk prediction model BOADICEA and a batch-mode version BOADICEACentre.
    MacInnis RJ; Bickerstaffe A; Apicella C; Dite GS; Dowty JG; Aujard K; Phillips KA; Weideman P; Lee A; Terry MB; Giles GG; Southey MC; Antoniou AC; Hopper JL
    Br J Cancer; 2013 Sep; 109(5):1296-301. PubMed ID: 23942072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of Machine Learning With Multiparametric Magnetic Resonance Imaging of the Breast for Early Prediction of Response to Neoadjuvant Chemotherapy and Survival Outcomes in Breast Cancer Patients.
    Tahmassebi A; Wengert GJ; Helbich TH; Bago-Horvath Z; Alaei S; Bartsch R; Dubsky P; Baltzer P; Clauser P; Kapetas P; Morris EA; Meyer-Baese A; Pinker K
    Invest Radiol; 2019 Feb; 54(2):110-117. PubMed ID: 30358693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A risk management model for familial breast cancer: A new application using Fuzzy Cognitive Map method.
    Papageorgiou EI; Jayashree Subramanian ; Karmegam A; Papandrianos N
    Comput Methods Programs Biomed; 2015 Nov; 122(2):123-35. PubMed ID: 26220142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Breast cancer risk prediction in women aged 35-50 years: impact of including sex hormone concentrations in the Gail model.
    Clendenen TV; Ge W; Koenig KL; Afanasyeva Y; Agnoli C; Brinton LA; Darvishian F; Dorgan JF; Eliassen AH; Falk RT; Hallmans G; Hankinson SE; Hoffman-Bolton J; Key TJ; Krogh V; Nichols HB; Sandler DP; Schoemaker MJ; Sluss PM; Sund M; Swerdlow AJ; Visvanathan K; Zeleniuch-Jacquotte A; Liu M
    Breast Cancer Res; 2019 Mar; 21(1):42. PubMed ID: 30890167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Breast Cancer Risk Prediction Using Clinical Models and 77 Independent Risk-Associated SNPs for Women Aged Under 50 Years: Australian Breast Cancer Family Registry.
    Dite GS; MacInnis RJ; Bickerstaffe A; Dowty JG; Allman R; Apicella C; Milne RL; Tsimiklis H; Phillips KA; Giles GG; Terry MB; Southey MC; Hopper JL
    Cancer Epidemiol Biomarkers Prev; 2016 Feb; 25(2):359-65. PubMed ID: 26677205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.