These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

387 related articles for article (PubMed ID: 31221197)

  • 1. Machine learning techniques for personalized breast cancer risk prediction: comparison with the BCRAT and BOADICEA models.
    Ming C; Viassolo V; Probst-Hensch N; Chappuis PO; Dinov ID; Katapodi MC
    Breast Cancer Res; 2019 Jun; 21(1):75. PubMed ID: 31221197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 10-year performance of four models of breast cancer risk: a validation study.
    Terry MB; Liao Y; Whittemore AS; Leoce N; Buchsbaum R; Zeinomar N; Dite GS; Chung WK; Knight JA; Southey MC; Milne RL; Goldgar D; Giles GG; McLachlan SA; Friedlander ML; Weideman PC; Glendon G; Nesci S; Andrulis IL; John EM; Phillips KA; Daly MB; Buys SS; Hopper JL; MacInnis RJ
    Lancet Oncol; 2019 Apr; 20(4):504-517. PubMed ID: 30799262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning-based lifetime breast cancer risk reclassification compared with the BOADICEA model: impact on screening recommendations.
    Ming C; Viassolo V; Probst-Hensch N; Dinov ID; Chappuis PO; Katapodi MC
    Br J Cancer; 2020 Sep; 123(5):860-867. PubMed ID: 32565540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting breast cancer risk using personal health data and machine learning models.
    Stark GF; Hart GR; Nartowt BJ; Deng J
    PLoS One; 2019; 14(12):e0226765. PubMed ID: 31881042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative validation of the BOADICEA and Tyrer-Cuzick breast cancer risk models incorporating classical risk factors and polygenic risk in a population-based prospective cohort of women of European ancestry.
    Pal Choudhury P; Brook MN; Hurson AN; Lee A; Mulder CV; Coulson P; Schoemaker MJ; Jones ME; Swerdlow AJ; Chatterjee N; Antoniou AC; Garcia-Closas M
    Breast Cancer Res; 2021 Feb; 23(1):22. PubMed ID: 33588869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validating the IBIS and BOADICEA Models for Predicting Breast Cancer Risk in the Iranian Population.
    Ghoncheh M; Ziaee F; Karami M; Poorolajal J
    Clin Breast Cancer; 2017 Jun; 17(3):e113-e118. PubMed ID: 28216418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning models in breast cancer survival prediction.
    Montazeri M; Montazeri M; Montazeri M; Beigzadeh A
    Technol Health Care; 2016; 24(1):31-42. PubMed ID: 26409558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Practical problems with clinical guidelines for breast cancer prevention based on remaining lifetime risk.
    Quante AS; Whittemore AS; Shriver T; Hopper JL; Strauch K; Terry MB
    J Natl Cancer Inst; 2015 Jul; 107(7):. PubMed ID: 25956172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BRCA1 and BRCA2 mutation predictions using the BOADICEA and BRCAPRO models and penetrance estimation in high-risk French-Canadian families.
    Antoniou AC; Durocher F; Smith P; Simard J; Easton DF;
    Breast Cancer Res; 2006; 8(1):R3. PubMed ID: 16417652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation of breast cancer risk assessment tools on a French-Canadian population-based cohort.
    Jantzen R; Payette Y; de Malliard T; Labbé C; Noisel N; Broët P
    BMJ Open; 2021 Apr; 11(4):e045078. PubMed ID: 33846154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation of a genetic risk score for Arkansas women of color.
    Starlard-Davenport A; Allman R; Dite GS; Hopper JL; Spaeth Tuff E; Macleod S; Kadlubar S; Preston M; Henry-Tillman R
    PLoS One; 2018; 13(10):e0204834. PubMed ID: 30281645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New Machine Learning Applications to Accelerate Personalized Medicine in Breast Cancer: Rise of the Support Vector Machines.
    Ozer ME; Sarica PO; Arga KY
    OMICS; 2020 May; 24(5):241-246. PubMed ID: 32228365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Breast cancer risk prediction accuracy in Jewish Israeli high-risk women using the BOADICEA and IBIS risk models.
    Laitman Y; Simeonov M; Keinan-Boker L; Liphshitz I; Friedman E
    Genet Res (Camb); 2013 Dec; 95(6):174-7. PubMed ID: 24506973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating the performance of National Comprehensive Cancer Network (NCCN) breast and ovarian genetic/familial high risk assessment referral criteria for breast cancer women in an Asian surgical breast clinic.
    Lim GH; Borje E; Allen JC
    Gland Surg; 2017 Feb; 6(1):35-42. PubMed ID: 28210550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prospective validation of the breast cancer risk prediction model BOADICEA and a batch-mode version BOADICEACentre.
    MacInnis RJ; Bickerstaffe A; Apicella C; Dite GS; Dowty JG; Aujard K; Phillips KA; Weideman P; Lee A; Terry MB; Giles GG; Southey MC; Antoniou AC; Hopper JL
    Br J Cancer; 2013 Sep; 109(5):1296-301. PubMed ID: 23942072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prospective validation of the BOADICEA multifactorial breast cancer risk prediction model in a large prospective cohort study.
    Yang X; Eriksson M; Czene K; Lee A; Leslie G; Lush M; Wang J; Dennis J; Dorling L; Carvalho S; Mavaddat N; Simard J; Schmidt MK; Easton DF; Hall P; Antoniou AC
    J Med Genet; 2022 Dec; 59(12):1196-1205. PubMed ID: 36162852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of Machine Learning With Multiparametric Magnetic Resonance Imaging of the Breast for Early Prediction of Response to Neoadjuvant Chemotherapy and Survival Outcomes in Breast Cancer Patients.
    Tahmassebi A; Wengert GJ; Helbich TH; Bago-Horvath Z; Alaei S; Bartsch R; Dubsky P; Baltzer P; Clauser P; Kapetas P; Morris EA; Meyer-Baese A; Pinker K
    Invest Radiol; 2019 Feb; 54(2):110-117. PubMed ID: 30358693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A risk management model for familial breast cancer: A new application using Fuzzy Cognitive Map method.
    Papageorgiou EI; Jayashree Subramanian ; Karmegam A; Papandrianos N
    Comput Methods Programs Biomed; 2015 Nov; 122(2):123-35. PubMed ID: 26220142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Breast cancer risk prediction in women aged 35-50 years: impact of including sex hormone concentrations in the Gail model.
    Clendenen TV; Ge W; Koenig KL; Afanasyeva Y; Agnoli C; Brinton LA; Darvishian F; Dorgan JF; Eliassen AH; Falk RT; Hallmans G; Hankinson SE; Hoffman-Bolton J; Key TJ; Krogh V; Nichols HB; Sandler DP; Schoemaker MJ; Sluss PM; Sund M; Swerdlow AJ; Visvanathan K; Zeleniuch-Jacquotte A; Liu M
    Breast Cancer Res; 2019 Mar; 21(1):42. PubMed ID: 30890167
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 20.