BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 31221413)

  • 1. Modelling the effect of spread in radiosensitivity parameters and repopulation rate on the probability of tumour control.
    Stavreva N; Stavrev P; Balabanova A; Nahum A; Ruggieri R; Pressyanov D
    Phys Med; 2019 Jul; 63():79-86. PubMed ID: 31221413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The modelled benefits of individualizing radiotherapy patients' dose using cellular radiosensitivity assays with inherent variability.
    Mackay RI; Hendry JH
    Radiother Oncol; 1999 Jan; 50(1):67-75. PubMed ID: 10225559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimum parameters in a model for tumour control probability, including interpatient heterogeneity: evaluation of the log-normal distribution.
    Keall PJ; Webb S
    Phys Med Biol; 2007 Jan; 52(1):291-302. PubMed ID: 17183142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On differences in radiosensitivity estimation: TCP experiments versus survival curves. A theoretical study.
    Stavrev P; Stavreva N; Ruggieri R; Nahum A
    Phys Med Biol; 2015 Aug; 60(15):N293-9. PubMed ID: 26215150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting the radiation control probability of heterogeneous tumour ensembles: data analysis and parameter estimation using a closed-form expression.
    Fenwick JD
    Phys Med Biol; 1998 Aug; 43(8):2159-78. PubMed ID: 9725596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monte Carlo dose calculations and radiobiological modelling: analysis of the effect of the statistical noise of the dose distribution on the probability of tumour control.
    Buffa FM; Nahum AE
    Phys Med Biol; 2000 Oct; 45(10):3009-23. PubMed ID: 11049185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Are more complicated tumour control probability models better?
    Gong J; Dos Santos MM; Finlay C; Hillen T
    Math Med Biol; 2013 Mar; 30(1):1-19. PubMed ID: 22006625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined effect of heterogeneous target dose and heterogeneous radiosensitivity on tumor control probability for different fractionation regimens.
    Kuperman VY; Lubich LM; Spradlin GS
    Phys Med; 2022 Mar; 95():140-147. PubMed ID: 35176720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A method to visualize the uncertainty of the prediction of radiobiological models.
    Zhang L; Hub M; Thieke C; Floca RO; Karger CP
    Phys Med; 2013 Sep; 29(5):556-61. PubMed ID: 23260766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The impact of hypofractionation on simultaneous dose-boosting to hypoxic tumor subvolumes.
    Ruggieri R; Nahum AE
    Med Phys; 2006 Nov; 33(11):4044-55. PubMed ID: 17153384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of heterogeneous target dose and radiosensitivity on BED and TCP for different treatment regimens.
    Kuperman VY; Lubich LM
    Phys Med Biol; 2021 Jul; 66(15):. PubMed ID: 33910174
    [No Abstract]   [Full Text] [Related]  

  • 12. Viability of the EUD and TCP concepts as reliable dose indicators.
    Ebert MA
    Phys Med Biol; 2000 Feb; 45(2):441-57. PubMed ID: 10701514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of tumour control probability for heterogeneous tumours in fractionated radiotherapy treatment protocols.
    Levin-Plotnik D; Hamilton RJ
    Phys Med Biol; 2004 Feb; 49(3):407-24. PubMed ID: 15012010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Individualization of dose prescription based on normal-tissue dose-volume and radiosensitivity data.
    Sanchez-Nieto B; Nahum AE; Dearnaley DP
    Int J Radiat Oncol Biol Phys; 2001 Feb; 49(2):487-99. PubMed ID: 11173145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of inhomogeneous radiosensitivity distributions and intrafractional organ movement on the tumour control probability of focused IMRT in prostate cancer.
    Thomann B; Sachpazidis I; Koubar K; Zamboglou C; Mavroidis P; Wiehle R; Grosu AL; Baltas D
    Radiother Oncol; 2018 Apr; 127(1):62-67. PubMed ID: 29548559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A stochastic model for tumour control probability that accounts for repair from sublethal damage.
    Ponce Bobadilla AV; Maini PK; Byrne H
    Math Med Biol; 2018 Jun; 35(2):181-202. PubMed ID: 28339783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Should single or distributed parameters be used to explain the steepness of tumour control probability curves?
    Daşu A; Toma-Daşu I; Fowler JF
    Phys Med Biol; 2003 Feb; 48(3):387-97. PubMed ID: 12608614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radiobiological parameters in a tumour control probability model for prostate cancer LDR brachytherapy.
    Her EJ; Reynolds HM; Mears C; Williams S; Moorehouse C; Millar JL; Ebert MA; Haworth A
    Phys Med Biol; 2018 Jun; 63(13):135011. PubMed ID: 29799812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of the effect of natural tumor cell death on radiotherapy outcomes.
    Stavrev P; Stavreva N; Penev D; Nahum A; Ruggieri R; Pressyanov D
    Phys Med Biol; 2018 Oct; 63(20):205001. PubMed ID: 30204124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell-cycle times and the tumour control probability.
    Maler A; Lutscher F
    Math Med Biol; 2010 Dec; 27(4):313-42. PubMed ID: 19966342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.